TY - GEN
T1 - Dose minimization game for smartphones
AU - Stelter, Nolan
AU - Das, Arnav
AU - Hanifah, Zahra
AU - Uddin, Rizwan
N1 - Publisher Copyright:
Copyright © 2018 ASME
PY - 2018
Y1 - 2018
N2 - Due to misconceptions surrounding radiation and nuclear energy, educating the general public about basic radiation concepts has become increasingly important. The Virtual Education and Research Laboratory (VERL) at the University of Illinois at Urbana-Champaign (UIUC) has developed a 3D, virtual, interactive game that conveys the physics of radiation and principles of radiation protection to the player. The model is a scavenger hunt style game that takes place in a virtual model of a TRIGA research reactor. Several virtual radiation sources are placed in the 3D virtual model of the TRIGA facility. Radiation drops away from the radiation source. The effect of shielding can also be incorporated in modeling the radiation transport, leading to realistic radiation fields. The user's goal is to find and collect (virtual) objects placed in this facility while minimizing the dose received in doing so. The player is meant to learn about time, distance, and shielding-key concepts in radiation protection. The start screen displays the radiation field in the form of a colored coded floor, as well as the location of the desired objects. With the given information, the player is encouraged to plan the route to collect the items and minimize exposure. By repeatedly playing the game, the player becomes familiar with the layout of the facility, and of the location of the radiation sources. This educational game is a useful teaching tool. Those unfamiliar with radiation protection concepts are able to understand how important time, distance, and shielding are in minimizing dosage. Additionally, this game proves to be a useful engagement and outreach tool. Upon completion of the game, the user is shown the score, the dose received, as well as a list of dose received in well-known instances such as eating a banana or in getting an x-ray at the dentist's office. The dose minimization game developed earlier for computers has now been developed for use as a game-app for cell phones. These recent developments allow for wider outreach, further increasing the use of the model as an outreach and educational tool.
AB - Due to misconceptions surrounding radiation and nuclear energy, educating the general public about basic radiation concepts has become increasingly important. The Virtual Education and Research Laboratory (VERL) at the University of Illinois at Urbana-Champaign (UIUC) has developed a 3D, virtual, interactive game that conveys the physics of radiation and principles of radiation protection to the player. The model is a scavenger hunt style game that takes place in a virtual model of a TRIGA research reactor. Several virtual radiation sources are placed in the 3D virtual model of the TRIGA facility. Radiation drops away from the radiation source. The effect of shielding can also be incorporated in modeling the radiation transport, leading to realistic radiation fields. The user's goal is to find and collect (virtual) objects placed in this facility while minimizing the dose received in doing so. The player is meant to learn about time, distance, and shielding-key concepts in radiation protection. The start screen displays the radiation field in the form of a colored coded floor, as well as the location of the desired objects. With the given information, the player is encouraged to plan the route to collect the items and minimize exposure. By repeatedly playing the game, the player becomes familiar with the layout of the facility, and of the location of the radiation sources. This educational game is a useful teaching tool. Those unfamiliar with radiation protection concepts are able to understand how important time, distance, and shielding are in minimizing dosage. Additionally, this game proves to be a useful engagement and outreach tool. Upon completion of the game, the user is shown the score, the dose received, as well as a list of dose received in well-known instances such as eating a banana or in getting an x-ray at the dentist's office. The dose minimization game developed earlier for computers has now been developed for use as a game-app for cell phones. These recent developments allow for wider outreach, further increasing the use of the model as an outreach and educational tool.
UR - http://www.scopus.com/inward/record.url?scp=85056150067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056150067&partnerID=8YFLogxK
U2 - 10.1115/ICONE26-82450
DO - 10.1115/ICONE26-82450
M3 - Conference contribution
AN - SCOPUS:85056150067
T3 - International Conference on Nuclear Engineering, Proceedings, ICONE
BT - Student Paper Competition
PB - American Society of Mechanical Engineers (ASME)
T2 - 2018 26th International Conference on Nuclear Engineering, ICONE 2018
Y2 - 22 July 2018 through 26 July 2018
ER -