Domain Adaptation with Dynamic Open-Set Targets

Jun Wu, Jingrui He

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Open-set domain adaptation aims to improve the generalization performance of a learning algorithm on a target task of interest by leveraging the label information from a relevant source task with only a subset of classes. However, most existing works are designed for the static setting, and can be hardly extended to the dynamic setting commonly seen in many real-world applications. In this paper, we focus on the more realistic open-set domain adaptation setting with a static source task and a time evolving target task where novel unknown target classes appear over time. Specifically, we show that the classification error of the new target task can be tightly bounded in terms of positive-unlabeled classification errors for historical tasks and open-set domain discrepancy across tasks. By empirically minimizing the upper bound of the target error, we propose a novel positive-unlabeled learning based algorithm named OuterAdapter for dynamic open-set domain adaptation with time evolving unknown classes. Extensive experiments on various data sets demonstrate the effectiveness and efficiency of our proposed OuterAdapter algorithm over state-of-the-art domain adaptation baselines.

Original languageEnglish (US)
Title of host publicationKDD 2022 - Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Number of pages11
ISBN (Electronic)9781450393850
StatePublished - Aug 14 2022
Event28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022 - Washington, United States
Duration: Aug 14 2022Aug 18 2022

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining


Conference28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022
Country/TerritoryUnited States


  • domain adaptation
  • open-set targets
  • positive-unlabeled learning

ASJC Scopus subject areas

  • Software
  • Information Systems


Dive into the research topics of 'Domain Adaptation with Dynamic Open-Set Targets'. Together they form a unique fingerprint.

Cite this