Document-Level Event Argument Extraction by Conditional Generation

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Event extraction has long been treated as a sentence-level task in the IE community. We argue that this setting does not match human information seeking behavior and leads to incomplete and uninformative extraction results. We propose a document-level neural event argument extraction model by formulating the task as conditional generation following event templates. We also compile a new document-level event extraction benchmark dataset WIKIEVENTS which includes complete event and coreference annotation. On the task of argument extraction, we achieve an absolute gain of 7.6% F1 and 5.7% F1 over the next best model on the RAMS and WIKIEVENTS datasets respectively. On the more challenging task of informative argument extraction, which requires implicit coreference reasoning, we achieve a 9.3% F1 gain over the best baseline. To demonstrate the portability of our model, we also create the first end-to-end zero-shot event extraction framework and achieve 97% of fully supervised model’s trigger extraction performance and 82% of the argument extraction performance given only access to 10 out of the 33 types on ACE.

Original languageEnglish (US)
Title of host publicationNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages894-908
Number of pages15
ISBN (Electronic)9781954085466
StatePublished - 2021
Event2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021 - Virtual, Online
Duration: Jun 6 2021Jun 11 2021

Publication series

NameNAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021
CityVirtual, Online
Period6/6/216/11/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Software

Fingerprint

Dive into the research topics of 'Document-Level Event Argument Extraction by Conditional Generation'. Together they form a unique fingerprint.

Cite this