TY - JOUR
T1 - DNA shuffling method for generating estrogen receptor α and β chimeras in yeast
AU - Sun, Jun
AU - Katzenellenbogen, John A.
AU - Zhao, Huimin
AU - Katzenellenbogen, Benita S.
PY - 2003/2/1
Y1 - 2003/2/1
N2 - To facilitate our study of the molecular basis for the estrogen receptor (ER) subtype selectivity of novel ligands, we used DNA shuffling to construct chimeric ERs having ligand binding domains derived from both ERα and ERβ. The efficiency of chimera generation was low with traditional DNA shuffling protocols. Furthermore, ER ligand binding domain sequences lack convenient restriction sites for introducing chimeric ligand binding domain sequences into expression vectors. To overcome these problems, we developed a modified strategy whereby chimeric sequences were exclusively amplified from among the reassembled products from DNA shuffling using a special pair of PCR primers whose 3′ ends specifically match the α and β sequences, respectively, and whose 5′ ends match sequences outside the ERβ ligand binding domain. When chimeric ligand binding domain DNA sequences, amplified with these primers, were co-transformed into a yeast strain with a linearized expression vector for ERβ, an active expression vector was produced by homologous recombination. Twenty-two different crossover sites were found; most occurred when there was a stretch of eight or more identical base pairs in both sequences, and many were concentrated in the regions important for studying ligand binding and transactivation. This method should prove to be useful for generating chimeric gene products from parent templates that share relatively low sequence identity.
AB - To facilitate our study of the molecular basis for the estrogen receptor (ER) subtype selectivity of novel ligands, we used DNA shuffling to construct chimeric ERs having ligand binding domains derived from both ERα and ERβ. The efficiency of chimera generation was low with traditional DNA shuffling protocols. Furthermore, ER ligand binding domain sequences lack convenient restriction sites for introducing chimeric ligand binding domain sequences into expression vectors. To overcome these problems, we developed a modified strategy whereby chimeric sequences were exclusively amplified from among the reassembled products from DNA shuffling using a special pair of PCR primers whose 3′ ends specifically match the α and β sequences, respectively, and whose 5′ ends match sequences outside the ERβ ligand binding domain. When chimeric ligand binding domain DNA sequences, amplified with these primers, were co-transformed into a yeast strain with a linearized expression vector for ERβ, an active expression vector was produced by homologous recombination. Twenty-two different crossover sites were found; most occurred when there was a stretch of eight or more identical base pairs in both sequences, and many were concentrated in the regions important for studying ligand binding and transactivation. This method should prove to be useful for generating chimeric gene products from parent templates that share relatively low sequence identity.
UR - http://www.scopus.com/inward/record.url?scp=0346668140&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0346668140&partnerID=8YFLogxK
U2 - 10.2144/03342st02
DO - 10.2144/03342st02
M3 - Article
C2 - 12613251
AN - SCOPUS:0346668140
SN - 0736-6205
VL - 34
SP - 278
EP - 288
JO - BioTechniques
JF - BioTechniques
IS - 2
ER -