DNA catalysts with tyrosine kinase activity

Shannon M. Walsh, Amit Sachdeva, Scott K. Silverman

Research output: Contribution to journalArticle

Abstract

We show that DNA catalysts (deoxyribozymes, DNA enzymes) can phosphorylate tyrosine residues of peptides. Using in vitro selection, we identified deoxyribozymes that transfer the γ-phosphoryl group from a 5′-triphosphorylated donor (a pppRNA oligonucleotide or GTP) to the tyrosine hydroxyl acceptor of a tethered hexapeptide. Tyrosine kinase deoxyribozymes that use pppRNA were identified from each of N30, N40, and N50 random-sequence pools. Each deoxyribozyme requires Zn2+, and most additionally require Mn2+. The deoxyribozymes have little or no selectivity for the amino acid identities near the tyrosine, but they are highly selective for phosphorylating tyrosine rather than serine. Analogous GTP-dependent DNA catalysts were identified and found to have apparent Km(GTP) as low as ∼20 μM. These findings establish that DNA has the fundamental catalytic ability to phosphorylate the tyrosine side chain of a peptide substrate.

Original languageEnglish (US)
Pages (from-to)14928-14931
Number of pages4
JournalJournal of the American Chemical Society
Volume135
Issue number40
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'DNA catalysts with tyrosine kinase activity'. Together they form a unique fingerprint.

  • Cite this