Divergent thermopower without a quantum phase transition

Kridsanaphong Limtragool, Philip W. Phillips

Research output: Contribution to journalArticlepeer-review


A general principle of modern statistical physics is that divergences of either thermodynamic or transport properties are only possible if the correlation length diverges. We show by explicit calculation that the thermopower in the quantum XY model d=1+1 and the Kitaev model in d=2+1 can (i) diverge even when the correlation length is finite and (ii) remain finite even when the correlation length diverges, thereby providing a counterexample to the standard paradigm. Two conditions are necessary: (i) the sign of the charge carriers and that of the group velocity must be uncorrelated and (ii) the current operator defined formally as the derivative of the Hamiltonian with respect to the gauge field does not describe a set of excitations that have a particle interpretation, as in strongly correlated electron matter. Recent experimental and theoretical findings on the divergent thermopower of a 2D electron gas are discussed in this context.

Original languageEnglish (US)
Article number086405
JournalPhysical review letters
Issue number8
StatePublished - Aug 22 2014

ASJC Scopus subject areas

  • General Physics and Astronomy


Dive into the research topics of 'Divergent thermopower without a quantum phase transition'. Together they form a unique fingerprint.

Cite this