TY - JOUR
T1 - Divergent Evolution of Lanthipeptide Stereochemistry
AU - Sarksian, Raymond
AU - Van Der Donk, Wilfred A.
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/9/16
Y1 - 2022/9/16
N2 - The three-dimensional structure of natural products is critical for their biological activities and, as such, enzymes have evolved that specifically generate active stereoisomers. Lanthipeptides are post-translationally modified peptidic natural products that contain macrocyclic thioethers featuring lanthionine (Lan) and/or methyllanthionine (MeLan) residues with defined stereochemistry. In this report, we compare two class I lanthipeptide biosynthetic gene clusters (BGCs), coi and olv, that represent two families of lanthipeptide gene clusters found in Actinobacteria. The precursor peptides and BGCs are quite similar with genes encoding a dehydratase, cyclase, and methyltransferase (MT). We illustrate that the precursor peptide CoiA1 is converted by these enzymes into a polymacrocyclic product, mCoiA1, that contains an analogous ring pattern to the previously characterized post-translationally modified OlvA peptide (mOlvA). However, a clear distinction between the two BGCs is an additional Thr-glutamyl lyase (GL) domain that is fused to the MT, CoiSA, which results in divergence of the product stereochemistry for the coi BGC. Two out of three MeLan rings of mCoiA1 contain different stereochemistry than the corresponding residues in mOlvA, with the most notable difference being a rare d-allo-l-MeLan residue, the formation of which is guided by CoiSA. This study illustrates how nature utilizes a distinct GL to control natural product stereochemistry in lanthipeptide biosynthesis.
AB - The three-dimensional structure of natural products is critical for their biological activities and, as such, enzymes have evolved that specifically generate active stereoisomers. Lanthipeptides are post-translationally modified peptidic natural products that contain macrocyclic thioethers featuring lanthionine (Lan) and/or methyllanthionine (MeLan) residues with defined stereochemistry. In this report, we compare two class I lanthipeptide biosynthetic gene clusters (BGCs), coi and olv, that represent two families of lanthipeptide gene clusters found in Actinobacteria. The precursor peptides and BGCs are quite similar with genes encoding a dehydratase, cyclase, and methyltransferase (MT). We illustrate that the precursor peptide CoiA1 is converted by these enzymes into a polymacrocyclic product, mCoiA1, that contains an analogous ring pattern to the previously characterized post-translationally modified OlvA peptide (mOlvA). However, a clear distinction between the two BGCs is an additional Thr-glutamyl lyase (GL) domain that is fused to the MT, CoiSA, which results in divergence of the product stereochemistry for the coi BGC. Two out of three MeLan rings of mCoiA1 contain different stereochemistry than the corresponding residues in mOlvA, with the most notable difference being a rare d-allo-l-MeLan residue, the formation of which is guided by CoiSA. This study illustrates how nature utilizes a distinct GL to control natural product stereochemistry in lanthipeptide biosynthesis.
UR - http://www.scopus.com/inward/record.url?scp=85137399140&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137399140&partnerID=8YFLogxK
U2 - 10.1021/acschembio.2c00492
DO - 10.1021/acschembio.2c00492
M3 - Article
C2 - 36001880
AN - SCOPUS:85137399140
SN - 1554-8929
VL - 17
SP - 2551
EP - 2558
JO - ACS chemical biology
JF - ACS chemical biology
IS - 9
ER -