Distribution high impedance fault location using localized voltage magnitude measurements

Shamina Hossain, Hao Zhu, Thomas Overbye

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The detection and location of high impedance faults has historically been a difficult endeavor due to the low currents produced. However, the recent advent of distributed voltage monitoring devices, enabling access to fast-sampled, expansive voltage measurements throughout a distribution network, can ease this task. This paper considers the potential to use these distribution level devices to detect and locate such faults. A simulation-based method is proposed that compares a measured voltage profile, obtained from the devices, and simulated voltage profiles at various locations using a power system simulation software. The simulation locations are intelligently selected using the Golden section search and possible fault impedance values are iterated through for each location. The L1-norm is used to compare the two profiles, with the lowest error norm representing the best match - the most likely fault location and impedance.

Original languageEnglish (US)
Title of host publication2014 North American Power Symposium, NAPS 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479959044
DOIs
StatePublished - Nov 21 2014
Event2014 North American Power Symposium, NAPS 2014 - Pullman, United States
Duration: Sep 7 2014Sep 9 2014

Publication series

Name2014 North American Power Symposium, NAPS 2014

Other

Other2014 North American Power Symposium, NAPS 2014
Country/TerritoryUnited States
CityPullman
Period9/7/149/9/14

Keywords

  • distributed monitoring devices
  • fault location
  • high impedance fault
  • voltage sags

ASJC Scopus subject areas

  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Distribution high impedance fault location using localized voltage magnitude measurements'. Together they form a unique fingerprint.

Cite this