Distributed seeking of Nash equilibria in mobile sensor networks

Miloš S. Stanković, Karl Henrik Johansson, Dušan M. Stipanović

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we consider the problem of distributed convergence to a Nash equilibrium based on minimal information about the underlying noncooperative game. We assume that the players/agents generate their actions based only on measurements of local cost functions, which are corrupted with additive noise. Structural parameters of their own and other players' costs, as well as the actions of the other players are unknown. Furthermore, we assume that the agents may have dynamics: their actions can not be changed instantaneously. We propose a method based on a stochastic extremum seeking algorithm with sinusoidal perturbations and we prove its convergence, with probability one, to a Nash equilibrium. We discuss how the proposed algorithm can be adopted for solving coordination problems in mobile sensor networks, taking into account specific motion dynamics of the sensors. The local cost functions can be designed such that some specific overall goal is achieved. We give an example in which each agent/sensor needs to fulfill a locally defined goal, while maintaining connectivity with neighboring agents. The proposed algorithms are illustrated through simulations.

Original languageEnglish (US)
Title of host publication2010 49th IEEE Conference on Decision and Control, CDC 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5598-5603
Number of pages6
ISBN (Print)9781424477456
DOIs
StatePublished - 2010
Event49th IEEE Conference on Decision and Control, CDC 2010 - Atlanta, United States
Duration: Dec 15 2010Dec 17 2010

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference49th IEEE Conference on Decision and Control, CDC 2010
Country/TerritoryUnited States
CityAtlanta
Period12/15/1012/17/10

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Distributed seeking of Nash equilibria in mobile sensor networks'. Together they form a unique fingerprint.

Cite this