Distributed-Memory Parallel Algorithms for Sparse Matrix and Sparse Tall-and-Skinny Matrix Multiplication

Isuru Ranawaka, Md Taufique Hussain, Charles Block, Gerasimos Gerogiannis, Josep Torrellas, Ariful Azad

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider a sparse matrix-matrix multiplication (SpGEMM) setting where one matrix is square and the other is tall and skinny. This special variant, TS-SpGEMM, has important applications in multi-source breadth-first search, influence maximization, sparse graph embedding, and algebraic multigrid solvers. Unfortunately, popular distributed algorithms like sparse SUMMA deliver suboptimal performance for TS-SpGEMM. To address this limitation, we develop a novel distributed-memory algorithm tailored for TS-SpGEMM. Our approach employs customized 1D partitioning for all matrices involved and leverages sparsity-aware tiling for efficient data transfers. In addition, it minimizes communication overhead by incorporating both local and remote computations. On average, our TSSpGEMM algorithm attains 5× performance gains over 2D and 3D SUMMA. Furthermore, we use our algorithm to implement multi-source breadth-first search and sparse graph embedding algorithms and demonstrate their scalability up to 512 Nodes (or 65,536 cores) on NERSC Perlmutter.

Original languageEnglish (US)
Title of host publicationProceedings of SC 2024
Subtitle of host publicationInternational Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
ISBN (Electronic)9798350352917
DOIs
StatePublished - 2024
Event2024 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2024 - Atlanta, United States
Duration: Nov 17 2024Nov 22 2024

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

Conference2024 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2024
Country/TerritoryUnited States
CityAtlanta
Period11/17/2411/22/24

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Software

Fingerprint

Dive into the research topics of 'Distributed-Memory Parallel Algorithms for Sparse Matrix and Sparse Tall-and-Skinny Matrix Multiplication'. Together they form a unique fingerprint.

Cite this