Distributed Learning Dynamics for Coalitional Games

Aya Hamed, Jeff S. Shamma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the framework of transferable utility coalitional games, a scoring (characteristic) function determines the value of any subset/coalition of agents. Agents decide on both which coalitions to form and the allocations of the values of the formed coalitions among their members. An important concept in coalitional games is that of a core solution, which is a partitioning of agents into coalitions and an associated allocation to each agent under which no group of agents can get a higher allocation by forming an alternative coalition. We present distributed learning dynamics for coalitional games that converge to a core solution whenever one exists. In these dynamics, an agent maintains a state consisting of (i) an aspiration level for its allocation and (ii) the coalition, if any, to which it belongs. In each stage, a randomly activated agent proposes to form a new coalition and changes its aspiration based on the success or failure of its proposal. The coalition membership structure is changed, accordingly, whenever the proposal succeeds. Required communications are that: (i) agents in the proposed new coalition need to reveal their current aspirations to the proposing agent, and (ii) agents are informed if they are joining the proposed coalition or if their existing coalition is broken. The proposing agent computes the feasibility of forming the coalition. We show that the dynamics hit an absorbing state whenever a core solution is reached. We further illustrate the distributed learning dynamics on a multi-agent task allocation setting.

Original languageEnglish (US)
Title of host publication2023 62nd IEEE Conference on Decision and Control, CDC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5020-5025
Number of pages6
ISBN (Electronic)9798350301243
DOIs
StatePublished - 2023
Event62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapore
Duration: Dec 13 2023Dec 15 2023

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference62nd IEEE Conference on Decision and Control, CDC 2023
Country/TerritorySingapore
CitySingapore
Period12/13/2312/15/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Distributed Learning Dynamics for Coalitional Games'. Together they form a unique fingerprint.

Cite this