Distributed control of two dimensional vehicular formations: stability margin improvement by mistuning

He Hao, Prabir Barooah, Prashant G. Mehta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider distributed control of a large two-dimensional (planar) vehicular formation. An individual vehicle in the formation is assumed to be a fully actuated point mass. The control objective is to move the formation with a constant pre-specified velocity while maintaining constant inter-vehicle separation between any pair of nearby vehicles. The control law is distributed in the sense that the control action at each vehicle depends on the relative position measurements with nearby vehicles and its own velocity measurement. For this problem, a partial differential equation (PDE) model is derived to describe the spatio-temporal evolution of velocity perturbations for large number of vehicles, Nveh. The PDE model is used to deduce asymptotic formulae for the stability margin (absolute value of the real part of the least stable eigenvalue). We show that the stability margin of the closed loop decays to 0 as the number of vehicles increases, but the decay rate in 2D formation is much slower than in 1D platoons. In addition, the PDE is used to optimize the stability margin using a mistuning-based approach, in which the control gains of the vehicles are changed slightly from their nominal values. We show that the mistuning design reduces the loss of stability margin significantly even with arbitrarily small amount of mistuning. The results of the analysis with the PDE model are corroborated with numerical computation of eigenvalues with the state-space model of the vehicular formation.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages1611-1618
Number of pages8
EditionPART B
ISBN (Print)9780791848920
DOIs
StatePublished - 2010
Event2009 ASME Dynamic Systems and Control Conference, DSCC2009 - Hollywood, CA, United States
Duration: Oct 12 2009Oct 14 2009

Publication series

NameProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
NumberPART B

Other

Other2009 ASME Dynamic Systems and Control Conference, DSCC2009
Country/TerritoryUnited States
CityHollywood, CA
Period10/12/0910/14/09

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Distributed control of two dimensional vehicular formations: stability margin improvement by mistuning'. Together they form a unique fingerprint.

Cite this