Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models

Andy Zhou, Jindong Wang, Yu Xiong Wang, Haohan Wang

Research output: Contribution to journalConference articlepeer-review

Abstract

We propose a conceptually simple and lightweight framework for improving the robustness of vision models through the combination of knowledge distillation and data augmentation. We address the conjecture that larger models do not make for better teachers by showing strong gains in out-of-distribution robustness when distilling from pretrained foundation models. Following this finding, we propose Discrete Adversarial Distillation (DAD), which leverages a robust teacher to generate adversarial examples and a VQGAN to discretize them, creating more informative samples than standard data augmentation techniques. We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting and demonstrate strong gains in out-of-distribution robustness and clean accuracy across different student architectures. Notably, our method adds minor computational overhead compared to similar techniques and can be easily combined with other data augmentations for further improvements.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Distilling Out-of-Distribution Robustness from Vision-Language Foundation Models'. Together they form a unique fingerprint.

Cite this