Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

Yu Meng, Yunyi Zhang, Jiaxin Huang, Xuan Wang, Yu Zhang, Heng Ji, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, rendering the straightforward application of supervised learning ineffective. In this paper, we propose (1) a noise-robust learning scheme comprised of a new loss function and a noisy label removal step, for training NER models on distantly-labeled data, and (2) a self-training method that uses contextualized augmentations created by pre-trained language models to improve the generalization ability of the NER model. On three benchmark datasets, our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.

Original languageEnglish (US)
Title of host publicationEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages10367-10378
Number of pages12
ISBN (Electronic)9781955917094
StatePublished - 2021
Event2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Virtual, Punta Cana, Dominican Republic
Duration: Nov 7 2021Nov 11 2021

Publication series

NameEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
Country/TerritoryDominican Republic
CityVirtual, Punta Cana
Period11/7/2111/11/21

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training'. Together they form a unique fingerprint.

Cite this