Distance-sware DAG embedding for proximity search on heterogeneous graphs

Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen Chuan Chang, Minghui Wu, Jing Ying

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Proximity search on heterogeneous graphs aims to measure the proximity between two nodes on a graph w.r.t. some semantic relation for ranking. Pioneer work often tries to measure such proximity by paths connecting the two nodes. However, paths as linear sequences have limited expressiveness for the complex network connections. In this paper, we explore a more expressive DAG (directed acyclic graph) data structure for modeling the connections between two nodes. Particularly, we are interested in learning a representation for the DAGs to encode the proximity between two nodes. We face two challenges to use DAGs, including how to efficiently generate DAGs and how to effectively learn DAG embedding for proximity search. We find distance-awareness as important for proximity search and the key to solve the above challenges. Thus we develop a novel Distance-aware DAG Embedding (D2AGE) model. We evaluate D2AGE on three benchmark data sets with six semantic relations, and we show that D2AGE outperforms the state-of-the-art baselines. We release the code on https://github.com/shuaiOKshuai.

Original languageEnglish (US)
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI Press
Pages2355-2362
Number of pages8
ISBN (Electronic)9781577358008
StatePublished - Jan 1 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: Feb 2 2018Feb 7 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Other

Other32nd AAAI Conference on Artificial Intelligence, AAAI 2018
CountryUnited States
CityNew Orleans
Period2/2/182/7/18

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Distance-sware DAG embedding for proximity search on heterogeneous graphs'. Together they form a unique fingerprint.

Cite this