Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems

Jeremy T. Young, Thomas Boulier, Eric Magnan, Elizabeth A. Goldschmidt, Ryan M. Wilson, Steven L. Rolston, James V. Porto, Alexey V. Gorshkov

Research output: Contribution to journalArticlepeer-review


We study theoretically and experimentally the competing blockade and antiblockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg population's dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate-equation model to the experimental observations [E. A. Goldschmidt, Phys. Rev. Lett. 116, 113001 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.113001] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drives.

Original languageEnglish (US)
Article number023424
JournalPhysical Review A
Issue number2
StatePublished - Feb 28 2018
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Dissipation-induced dipole blockade and antiblockade in driven Rydberg systems'. Together they form a unique fingerprint.

Cite this