Abstract
Connecting genotypes to image phenotypes is crucial for a comprehensive understanding of cancer. To learn such connections, new machine learning approaches must be developed for the better integration of imaging and genomic data. Here we propose a novel approach called Discriminative Bag-of-Cells (DBC) for predicting genomic markers using imaging features, which addresses the challenge of summarizing histopathological images by representing cells with learned discriminative types, or codewords. We also developed a reliable and efficient patch-based nuclear segmentation scheme using convolutional neural networks from which nuclear and cellular features are extracted. Applying DBC on TCGA breast cancer samples to predict basal subtype status yielded a class-balanced accuracy of 70% on a separate test partition of 213 patients. As data sets of imaging and genomic data become increasingly available, we believe DBC will be a useful approach for screening histopathological images for genomic markers. Source code of nuclear segmentation and DBC are available at: https://github.com/bchidest/DBC.
Original language | English (US) |
---|---|
Pages (from-to) | 319-330 |
Number of pages | 12 |
Journal | Pacific Symposium on Biocomputing |
Volume | 0 |
Issue number | 212669 |
DOIs | |
State | Published - 2018 |
Event | 23rd Pacific Symposium on Biocomputing, PSB 2018 - Kohala Coast, United States Duration: Jan 3 2018 → Jan 7 2018 |
Keywords
- Computational pathology
- Histopathological image analysis
- Imaging-genomics
ASJC Scopus subject areas
- Biomedical Engineering
- Computational Theory and Mathematics