TY - JOUR
T1 - Discrete molecular states in the brain accompany changing responses to a vocal signal
AU - Dong, Shu
AU - Replogle, Kirstin L.
AU - Hasadsri, Linda
AU - Imai, Brian S.
AU - Yau, Peter M.
AU - Rodriguez-Zas, Sandra
AU - Southey, Bruce R.
AU - Sweedler, Jonathan V.
AU - Clayton, David F.
PY - 2009/7/7
Y1 - 2009/7/7
N2 - New experiences can trigger changes in gene expression in the brain. To understand this phenomenon better, we studied zebra finches hearing playbacks of birdsong. Earlier research had shown that initial playbacks of a novel song transiently increase the ZENK (ZIF-268, EGR1, NGFIA, KROX-24) mRNA in the auditory forebrain, but the response selectively habituates after repetition of the stimulus. Here, using DNA microarray analysis, we show that novel song exposure induces rapid changes in thousands of RNAs, with even more RNAs decreasing than increasing. Habituation training leads to the emergence of a different gene expression profile a day later, accompanied by loss of essentially all of the rapid "novel" molecular responses. The novel molecular profile is characterized by increases in genes involved in transcription andRNAprocessing and decreases in ion channels and putative noncoding RNAs. The "habituated" profile is dominated by changes in genes for mitochondrial proteins. A parallel proteomic analysis [2-dimensional difference gel electrophoresis (2D-DIGE) and sequencing by mass spectrometry] also detected changes in mitochondrial proteins, and direct enzyme assay demonstrated changes in both complexes I and IV in the habituated state. Thus a natural experience, in this case hearing the sound of birdsong, can lead to major shifts in energetics and macromolecular metabolism in higher centers in the brain.
AB - New experiences can trigger changes in gene expression in the brain. To understand this phenomenon better, we studied zebra finches hearing playbacks of birdsong. Earlier research had shown that initial playbacks of a novel song transiently increase the ZENK (ZIF-268, EGR1, NGFIA, KROX-24) mRNA in the auditory forebrain, but the response selectively habituates after repetition of the stimulus. Here, using DNA microarray analysis, we show that novel song exposure induces rapid changes in thousands of RNAs, with even more RNAs decreasing than increasing. Habituation training leads to the emergence of a different gene expression profile a day later, accompanied by loss of essentially all of the rapid "novel" molecular responses. The novel molecular profile is characterized by increases in genes involved in transcription andRNAprocessing and decreases in ion channels and putative noncoding RNAs. The "habituated" profile is dominated by changes in genes for mitochondrial proteins. A parallel proteomic analysis [2-dimensional difference gel electrophoresis (2D-DIGE) and sequencing by mass spectrometry] also detected changes in mitochondrial proteins, and direct enzyme assay demonstrated changes in both complexes I and IV in the habituated state. Thus a natural experience, in this case hearing the sound of birdsong, can lead to major shifts in energetics and macromolecular metabolism in higher centers in the brain.
KW - Habituation
KW - Microarray
KW - Mitochondria
KW - Proteomic
KW - Songbird
UR - http://www.scopus.com/inward/record.url?scp=67650495018&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650495018&partnerID=8YFLogxK
U2 - 10.1073/pnas.0812998106
DO - 10.1073/pnas.0812998106
M3 - Article
C2 - 19541599
AN - SCOPUS:67650495018
SN - 0027-8424
VL - 106
SP - 11364
EP - 11369
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 27
ER -