Discovering Objects that Can Move

Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu Xiong Wang, Adrien Gaidon, Martial Hebert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper studies the problem of object discovery - separating objects from the background without manual labels. Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions. However, by relying on appearance alone, these methods fail to separate objects from the background in cluttered scenes. This is a fundamental limitation since the definition of an object is inherently ambiguous and context-dependent. To resolve this ambiguity, we choose to focus on dynamic objects - entities that can move independently in the world. We then scale the recent auto-encoder based frameworks for unsuper-vised object discovery from toy synthetic images to complex real-world scenes. To this end, we simplify their architecture, and augment the resulting model with a weak learning signal from general motion segmentation algorithms. Our experiments demonstrate that, despite only capturing a small subset of the objects that move, this signal is enough to generalize to segment both moving and static instances of dynamic objects. We show that our model scales to a newly collected, photo- realistic synthetic dataset with street driving scenarios. Additionally, we leverage ground truth segmentation and flow annotations in this dataset for thorough ablation and evaluation. Finally, our experiments on the real-world KITTI benchmark demonstrate that the proposed approach outperforms both heuristic- and learning-based methods by capitalizing on motion cues.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages11779-11788
Number of pages10
ISBN (Electronic)9781665469463
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Keywords

  • Motion and tracking
  • Representation learning
  • Segmentation
  • Self-& semi-& meta- Video analysis and understanding
  • grouping and shape analysis

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Discovering Objects that Can Move'. Together they form a unique fingerprint.

Cite this