Directed information and pearl's causal calculus

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Probabilistic graphical models are a fundamental tool in statistics, machine learning, signal processing, and control. When such a model is defined on a directed acyclic graph (DAG), one can assign a partial ordering to the events occurring in the corresponding stochastic system. Based on the work of Judea Pearl and others, these DAG-based "causal factorizations" of joint probability measures have been used for characterization and inference of functional dependencies (causal links). This mostly expository paper focuses on several connections between Pearl's formalism (and in particular his notion of "intervention") and information-theoretic notions of causality and feedback (such as causal conditioning, directed stochastic kernels, and directed information). As an application, we show how conditional directed information can be used to develop an information-theoretic version of Pearl's "backdoor" criterion for identifiability of causal effects from passive observations. This suggests that the back-door criterion can be thought of as a causal analog of statistical sufficiency.

Original languageEnglish (US)
Title of host publication2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011
Pages958-965
Number of pages8
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011 - Monticello, IL, United States
Duration: Sep 28 2011Sep 30 2011

Publication series

Name2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011

Other

Other2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011
Country/TerritoryUnited States
CityMonticello, IL
Period9/28/119/30/11

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Directed information and pearl's causal calculus'. Together they form a unique fingerprint.

Cite this