TY - JOUR
T1 - Direct simulation of turbulent swept flow over a wire in a channel
AU - Ranjan, R.
AU - Pantano, C.
AU - Fischer, P.
N1 - Funding Information:
This work was supported in part by Argonne National Laboratory under subcontract 7F-01201 and by the centre for the Simulation of Advanced Rockets supported by the U.S. Department of Energy through the University of California under subcontract B523819. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.
PY - 2010/5/25
Y1 - 2010/5/25
N2 - Turbulent swept flow over a cylindrical wire placed on a wall of a channel is investigated using direct numerical simulations. This geometry is a model of the flow through the wire-wrapped fuel pins, the heat exchanger, typical of many nuclear reactor designs. Mean flow along and across the wire axis is imposed, leading to the formation of separated flow regions. The Reynolds number based on the bulk velocity along the wire axis direction and the channel half height is 5400 and four cases are simulated with different flowrates across the wire. This configuration is topologically similar to backward-facing steps or slots with swept flow, except that the dominant flow is along the obstacle axis in the present study and the crossflow is smaller than the axial flow, i.e. the sweep angle is large. Mean velocities, turbulence statistics, wall shear stress and instantaneous flow structures are investigated. Particular attention is devoted to the statistics of the shear stress on the walls of the channel and the wire in the recirculation zone. The flow around the mean reattachment region, at the termination of the recirculating bubble, does not exhibit the typical decay of the mean shear stress observed in classical backward-facing step flows owing to the presence of a strong axial flow. The evolution of the mean wall shear stress angle after reattachment indicates that the flow recovers towards equilibrium at a rather slow rate, which decreases with sweep angle. Finally, the database is analysed to estimate resolution requirements, in particular around the recirculation zones, for large-eddy simulations. This has implications in more complete geometrical models of a wire-wrapped assembly, involving hundreds of fuel pins, where only turbulence modelling can be afforded computationally.
AB - Turbulent swept flow over a cylindrical wire placed on a wall of a channel is investigated using direct numerical simulations. This geometry is a model of the flow through the wire-wrapped fuel pins, the heat exchanger, typical of many nuclear reactor designs. Mean flow along and across the wire axis is imposed, leading to the formation of separated flow regions. The Reynolds number based on the bulk velocity along the wire axis direction and the channel half height is 5400 and four cases are simulated with different flowrates across the wire. This configuration is topologically similar to backward-facing steps or slots with swept flow, except that the dominant flow is along the obstacle axis in the present study and the crossflow is smaller than the axial flow, i.e. the sweep angle is large. Mean velocities, turbulence statistics, wall shear stress and instantaneous flow structures are investigated. Particular attention is devoted to the statistics of the shear stress on the walls of the channel and the wire in the recirculation zone. The flow around the mean reattachment region, at the termination of the recirculating bubble, does not exhibit the typical decay of the mean shear stress observed in classical backward-facing step flows owing to the presence of a strong axial flow. The evolution of the mean wall shear stress angle after reattachment indicates that the flow recovers towards equilibrium at a rather slow rate, which decreases with sweep angle. Finally, the database is analysed to estimate resolution requirements, in particular around the recirculation zones, for large-eddy simulations. This has implications in more complete geometrical models of a wire-wrapped assembly, involving hundreds of fuel pins, where only turbulence modelling can be afforded computationally.
UR - http://www.scopus.com/inward/record.url?scp=77952424301&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952424301&partnerID=8YFLogxK
U2 - 10.1017/S0022112009993958
DO - 10.1017/S0022112009993958
M3 - Article
AN - SCOPUS:77952424301
SN - 0022-1120
VL - 651
SP - 165
EP - 209
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -