Abstract

The progress in high performance computing and parallel algorithms now allows the modelling of trabecular (spongy) bone using its actual complex geometry. In this paper, the nonlinear computational model of trabecular bone, that includes plasticity and contact mechanics, is applied to trabecular bone architectures imaged using micro-computed tomography. This model is used to predict the overall compressive elasto-plastic stress-strain relations of trabecular bone samples. The results compare favorably with experimental results of trabecular bone having same architectures. Such direct numerical model of mechanical behavior of trabecular bone provides needed inputs for an experimentally-based multiscale predictive computational model, and should have high impact on clinical assessment of bone quality and serve as a novel tool for a more accurate prediction of osteoporosis, a bone disease characterized by bone’s susceptibility to fracture.
Original languageEnglish (US)
Number of pages3
StatePublished - 2016

Fingerprint

Dive into the research topics of 'DIRECT NUMERICAL SIMULATION OF BONE PLASTICITY AND STRENGTH'. Together they form a unique fingerprint.

Cite this