Direct numerical simulation and analytical modeling of locally reacting, single degree of freedom acoustic liners with turbulent grazing flow

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Single degree-of-freedom conventional acoustic liners are widely installed in jet engines to reduce internal engine noise. They work by converting acoustic energy into vorticity-bound fluctuations. Despite being widely used, effective design-stage models of acoustic liners placed in high sound amplitude conditions, possibly with a turbulent grazing flow, are not available due to the near-liner flow complexity and diagnostic challenges. The work presented in this thesis uses direct numerical simulations (DNS) of a compressible, viscous fluid to understand the inherent fluid mechanics and guide reduced-order-model development. In this work, detailed interaction of an incident acoustic field with a Mach 0.5 laminar and turbulent grazing flow with a cavity-backed circular orifice is studied. All results are for tonal excitation at 130 dB from 2.2 - 3.0 kHz, or at 3 kHz with 130 - 160 dB acoustic amplitude. The results suggest that the liner experiences a drag increase over the baseline geometry with acoustic excitation and that facesheet shear stress measurements, while dominant at low acoustic amplitudes, contribute less at higher acoustic amplitudes. The DNS data further show that the orifice discharge coefficient can be semi-empirically modeled effectively using an acoustic-hydrodynamic scaling. The results indicate that experimental in situ impedance measurements can be contaminated by microphone-orifice interaction. Finally, the time-domain model without grazing flow was extended to include grazing flow by properly modeling the discharge coefficient and the turbulent boundary layer effect. Reasonable agreement of the liner impedance prediction was found with the DNS data. Discrepancies of the prediction suggest the future improvement of the model development.

Original languageEnglish (US)
Title of host publication20th AIAA/CEAS Aeroacoustics Conference
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781624102851
DOIs
StatePublished - 2014
Event20th AIAA/CEAS Aeroacoustics Conference 2014 - Atlanta, GA, United States
Duration: Jun 16 2014Jun 20 2014

Publication series

Name20th AIAA/CEAS Aeroacoustics Conference

Other

Other20th AIAA/CEAS Aeroacoustics Conference 2014
Country/TerritoryUnited States
CityAtlanta, GA
Period6/16/146/20/14

ASJC Scopus subject areas

  • Aerospace Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Direct numerical simulation and analytical modeling of locally reacting, single degree of freedom acoustic liners with turbulent grazing flow'. Together they form a unique fingerprint.

Cite this