TY - JOUR
T1 - Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome
AU - Sun, Jie
AU - Wen, Fei
AU - Si, Tong
AU - Xu, Jian He
AU - Zhao, Huimin
PY - 2012/6
Y1 - 2012/6
N2 - Arabinoxylan is a heteropolymeric chain of a β-1,4-linked xylose backbone substituted with arabinose residues, representing a principal component of plant cell walls. Here we developed recombinant Saccharomyces cerevisiae strains as whole-cell biocatalysts capable of combining hemicellulase production, xylan hydrolysis, and hydrolysate fermentation into a single step. These strains displayed a series of uni-, bi-, and trifunctional minihemicellulosomes that consisted of a miniscaffoldin (CipA3/CipA1) and up to three chimeric enzymes. The miniscaffoldin derived from Clostridium thermocellum contained one or three cohesin modules and was tethered to the cell surface through the S. cerevisiae a-agglutinin adhesion receptor. Up to three types of hemicellulases, an endoxylanase (XynII), an arabinofuranosidase (AbfB), and a β-xylosidase (XlnD), each bearing a C-terminal dockerin, were assembled onto the miniscaffoldin by high-affinity cohesin-dockerin interactions. Compared to uni- and bifunctional minihemicellulosomes, the resulting quaternary trifunctional complexes exhibited an enhanced rate of hydrolysis of arabinoxylan. Furthermore, with an integrated D-xylose-utilizing pathway, the recombinant yeast displaying the bifunctional minihemicellulosome CipA3-XynII-XlnD could simultaneously hydrolyze and ferment birchwood xylan to ethanol with a yield of 0.31 g per g of sugar consumed.
AB - Arabinoxylan is a heteropolymeric chain of a β-1,4-linked xylose backbone substituted with arabinose residues, representing a principal component of plant cell walls. Here we developed recombinant Saccharomyces cerevisiae strains as whole-cell biocatalysts capable of combining hemicellulase production, xylan hydrolysis, and hydrolysate fermentation into a single step. These strains displayed a series of uni-, bi-, and trifunctional minihemicellulosomes that consisted of a miniscaffoldin (CipA3/CipA1) and up to three chimeric enzymes. The miniscaffoldin derived from Clostridium thermocellum contained one or three cohesin modules and was tethered to the cell surface through the S. cerevisiae a-agglutinin adhesion receptor. Up to three types of hemicellulases, an endoxylanase (XynII), an arabinofuranosidase (AbfB), and a β-xylosidase (XlnD), each bearing a C-terminal dockerin, were assembled onto the miniscaffoldin by high-affinity cohesin-dockerin interactions. Compared to uni- and bifunctional minihemicellulosomes, the resulting quaternary trifunctional complexes exhibited an enhanced rate of hydrolysis of arabinoxylan. Furthermore, with an integrated D-xylose-utilizing pathway, the recombinant yeast displaying the bifunctional minihemicellulosome CipA3-XynII-XlnD could simultaneously hydrolyze and ferment birchwood xylan to ethanol with a yield of 0.31 g per g of sugar consumed.
UR - http://www.scopus.com/inward/record.url?scp=84864080129&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84864080129&partnerID=8YFLogxK
U2 - 10.1128/AEM.07679-11
DO - 10.1128/AEM.07679-11
M3 - Article
C2 - 22447594
AN - SCOPUS:84864080129
SN - 0099-2240
VL - 78
SP - 3837
EP - 3845
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
IS - 11
ER -