DimonGen: Diversified Generative Commonsense Reasoning for Explaining Concept Relationships

Chenzhengyi Liu, Jie Huang, Kerui Zhu, Kevin Chen Chuan Chang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose DimonGen, which aims to generate diverse sentences describing concept relationships in various everyday scenarios. To support this, we first create a benchmark dataset for this task by adapting the existing CommonGen dataset. We then propose a two-stage model called MoREE to generate the target sentences. MoREE consists of a mixture of retrievers model that retrieves diverse context sentences related to the given concepts, and a mixture of generators model that generates diverse sentences based on the retrieved contexts. We conduct experiments on the DimonGen task and show that MoREE outperforms strong baselines in terms of both the quality and diversity of the generated sentences. Our results demonstrate that MoREE is able to generate diverse sentences that reflect different relationships between concepts, leading to a comprehensive understanding of concept relationships.

Original languageEnglish (US)
Title of host publicationLong Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages4719-4731
Number of pages13
ISBN (Electronic)9781959429722
StatePublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'DimonGen: Diversified Generative Commonsense Reasoning for Explaining Concept Relationships'. Together they form a unique fingerprint.

Cite this