Abstract
This review summarizes the performance of potential catalysts for the synthesis of dimethyl carbonate (DMC) using CO2 as a feedstock by two major processes—the direct route of carbonylation of alcohols and the indirect route of alcoholysis of urea. The reaction mechanisms and corresponding catalysts that were previously investigated are discussed. The major challenges associated with the conversion of CO2 to DMC are the low yields, low DMC selectivity, and thermodynamic limitations (alcohol carbonylation) of reversible reactions with low equilibrium constants. This occurs mainly due to the highly stable carbon dioxide molecules. The development of novel catalysts with high yields and high selectivity needs to be studied to overcome these technical challenges. In addition, to enhance the DMC yield, the use of dehydrating agents for water removal from the reaction mixture is recommended and discussed in detail in this article. This review critically examines the different catalysts used by investigators, along with their respective operating conditions and suitability in applications for the commercial synthesis of CO2-based DMC.
Original language | English (US) |
---|---|
Article number | 5133 |
Journal | Energies |
Volume | 15 |
Issue number | 14 |
DOIs | |
State | Published - Jul 2022 |
Keywords
- dimethyl carbonate
- homogenous catalysis
- heterogeneous catalysis
- urea alcoholysis
- direct conversion from CO2
- direct conversion from CO
ASJC Scopus subject areas
- Control and Optimization
- Energy (miscellaneous)
- Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
- Building and Construction
- Fuel Technology
- Renewable Energy, Sustainability and the Environment