TY - JOUR
T1 - Digital representations using the greatest integer function
AU - Reznick, Bruce
PY - 1989/3
Y1 - 1989/3
N2 - Let Sd(α) denote the set of all integers which can be expressed in the form Σ ε[αi] with εi € (0,…, d ™ 1), where d ≥ 2 is an integer and α ≥ 1 is real, and let ld denote the set of a so that Sd(α) = Z+. We show that Id = [1, rd]∪(d), where r2 = 13l/4, r3 = 221/3 and r4 = (d2 − d − 2)l/2 for d ≥ 4. If α Ε Id, we show that Td(α), the complement of Sd(α), is infinite, and discuss the density of Td(α) when α < d. For d ≥ 4 and a particular quadratic irrational β = β(d) < d, we describe Td(β) explicitly and show that ΙTd(β) ∩ [0, n]Ι is of order ne(d), where e(d) > 1.
AB - Let Sd(α) denote the set of all integers which can be expressed in the form Σ ε[αi] with εi € (0,…, d ™ 1), where d ≥ 2 is an integer and α ≥ 1 is real, and let ld denote the set of a so that Sd(α) = Z+. We show that Id = [1, rd]∪(d), where r2 = 13l/4, r3 = 221/3 and r4 = (d2 − d − 2)l/2 for d ≥ 4. If α Ε Id, we show that Td(α), the complement of Sd(α), is infinite, and discuss the density of Td(α) when α < d. For d ≥ 4 and a particular quadratic irrational β = β(d) < d, we describe Td(β) explicitly and show that ΙTd(β) ∩ [0, n]Ι is of order ne(d), where e(d) > 1.
UR - http://www.scopus.com/inward/record.url?scp=84966246940&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84966246940&partnerID=8YFLogxK
U2 - 10.1090/S0002-9947-1989-0954602-4
DO - 10.1090/S0002-9947-1989-0954602-4
M3 - Article
AN - SCOPUS:84966246940
SN - 0002-9947
VL - 312
SP - 355
EP - 375
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
IS - 1
ER -