TY - JOUR
T1 - Diffusion Monte Carlo for Accurate Dissociation Energies of 3d Transition Metal Containing Molecules
AU - Doblhoff-Dier, Katharina
AU - Meyer, Jörg
AU - Hoggan, Philip E.
AU - Kroes, Geert Jan
AU - Wagner, Lucas K.
N1 - Funding Information:
This work was sponsored by NWO Exacte Wetenschappen (EW; NWO Physical Sciences Division), for the use of supercomputer facilities, and by financial support from the European Research Council through ERC-2013 Advanced Grant no. 338580. L.K.W. was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award no. FG02-12ER46875.
Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/6/14
Y1 - 2016/6/14
N2 - Transition metals and transition metal compounds are important to catalysis, photochemistry, and many superconducting systems. We study the performance of diffusion Monte Carlo (DMC) applied to transition metal containing dimers (TMCDs) using single-determinant Slater-Jastrow trial wavefunctions and investigate the possible influence of the locality and pseudopotential errors. We find that the locality approximation can introduce nonsystematic errors of up to several tens of kilocalories per mole in the absolute energy of Cu and CuH if Ar or Mg core pseudopotentials (PPs) are used for the 3d transition metal atoms. Even for energy differences such as binding energies, errors due to the locality approximation can be problematic if chemical accuracy is sought. The use of the Ne core PPs developed by Burkatzki et al. (J. Chem. Phys. 2008, 129, 164115), the use of linear energy minimization rather than unreweighted variance minimization for the optimization of the Jastrow function, and the use of large Jastrow parametrizations reduce the locality errors. In the second section of this article, we study the general performance of DMC for 3d TMCDs using a database of binding energies of 20 TMCDs, for which comparatively accurate experimental data is available. Comparing our DMC results to these data for our results that compare best with experiment, we find a mean unsigned error (MUE) of 4.5 kcal/mol. This compares well with the achievable accuracy in CCSDT(2)Q (MUE = 4.6 kcal/mol) and the best all-electron DFT results (MUE = 4.5 kcal/mol) for the same set of systems (Truhlar et al. J. Chem. Theory Comput. 2015, 11, 2036-2052). The mean errors in DMC depend less on the exchange-correlation functionals used to generate the trial wavefunction than the corresponding mean errors in the underlying DFT calculations. Furthermore, the QMC results obtained for each molecule individually vary less with the functionals used. These observations are relevant for systems such as molecules interacting with transition metal surfaces where the DFT functionals performing best for molecules (hybrids) do not yield improvements in DFT. Overall, the results presented in this article yield important guidelines for both the assessment of the achievable accuracy with DMC and the design of DMC calculations for systems including transition metal atoms.
AB - Transition metals and transition metal compounds are important to catalysis, photochemistry, and many superconducting systems. We study the performance of diffusion Monte Carlo (DMC) applied to transition metal containing dimers (TMCDs) using single-determinant Slater-Jastrow trial wavefunctions and investigate the possible influence of the locality and pseudopotential errors. We find that the locality approximation can introduce nonsystematic errors of up to several tens of kilocalories per mole in the absolute energy of Cu and CuH if Ar or Mg core pseudopotentials (PPs) are used for the 3d transition metal atoms. Even for energy differences such as binding energies, errors due to the locality approximation can be problematic if chemical accuracy is sought. The use of the Ne core PPs developed by Burkatzki et al. (J. Chem. Phys. 2008, 129, 164115), the use of linear energy minimization rather than unreweighted variance minimization for the optimization of the Jastrow function, and the use of large Jastrow parametrizations reduce the locality errors. In the second section of this article, we study the general performance of DMC for 3d TMCDs using a database of binding energies of 20 TMCDs, for which comparatively accurate experimental data is available. Comparing our DMC results to these data for our results that compare best with experiment, we find a mean unsigned error (MUE) of 4.5 kcal/mol. This compares well with the achievable accuracy in CCSDT(2)Q (MUE = 4.6 kcal/mol) and the best all-electron DFT results (MUE = 4.5 kcal/mol) for the same set of systems (Truhlar et al. J. Chem. Theory Comput. 2015, 11, 2036-2052). The mean errors in DMC depend less on the exchange-correlation functionals used to generate the trial wavefunction than the corresponding mean errors in the underlying DFT calculations. Furthermore, the QMC results obtained for each molecule individually vary less with the functionals used. These observations are relevant for systems such as molecules interacting with transition metal surfaces where the DFT functionals performing best for molecules (hybrids) do not yield improvements in DFT. Overall, the results presented in this article yield important guidelines for both the assessment of the achievable accuracy with DMC and the design of DMC calculations for systems including transition metal atoms.
UR - http://www.scopus.com/inward/record.url?scp=84974801214&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84974801214&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.6b00160
DO - 10.1021/acs.jctc.6b00160
M3 - Article
C2 - 27175914
AN - SCOPUS:84974801214
SN - 1549-9618
VL - 12
SP - 2583
EP - 2597
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 6
ER -