Diffusion approximations for online principal component estimation and global convergence

Chris Junchi Li, Mengdi Wang, Han Liu, Tong Zhang

Research output: Contribution to journalConference articlepeer-review

Abstract

In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient descent method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for principal component analysis under the additional assumption of bounded samples.

Original languageEnglish (US)
Pages (from-to)646-656
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - 2017
Externally publishedYes
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Diffusion approximations for online principal component estimation and global convergence'. Together they form a unique fingerprint.

Cite this