Diffuse gamma rays from the Galactic Plane: Probing the "GeV excess" and identifying the "TeV excess"

Tijana Prodanović, Brian D. Fields, John F. Beacom

Research output: Contribution to journalArticlepeer-review


Pion decay gamma rays have long been recognized as a unique signature of hadronic cosmic rays and their interactions with the interstellar medium. We present a model-independent way of constraining this signal with observations of the Galactic Plane in diffuse gamma rays. We combine detections by the EGRET instrument at GeV energies and the Milagro Čerenkov detector at TeV energies with upper limits from KASCADE and CASA-MIA ground arrays at PeV energies. Such a long "lever arm", spanning at least six orders of magnitude in energy, reveals a "TeV excess" in the diffuse Galactic Plane gamma-ray spectrum. While the origin of this excess is unknown, it likely implies also enhanced TeV neutrino fluxes, significantly improving the prospects for their detection. We show that unresolved point sources are a possible source of the TeV excess. In fact, the spectra of the unidentified EGRET sources in the Milagro region must break between ∼10 GeV and ∼1 TeV to avoid strongly overshooting the Milagro measurement; this may have important implications for cosmic-ray acceleration. Finally, we use our approach to examine the recent suggestion that dark-matter annihilation may account for the observed excess in diffuse Galactic gamma-rays detected by EGRET at energies above 1 GeV. Within our model-independent approach, current data cannot rule this possibility in or out; however we point out how a long "lever arm" can be used to constrain the pionic gamma-ray component and in turn limit the "GeV excess" and its possible sources. Experiments such as HESS and MAGIC, and the upcoming VERITAS and GLAST, should be able to finally disentangle the main sources of the Galactic gamma rays.

Original languageEnglish (US)
Pages (from-to)10-20
Number of pages11
JournalAstroparticle Physics
Issue number1
StatePublished - Feb 2007


  • Cosmic rays
  • Dark matter
  • Gamma rays

ASJC Scopus subject areas

  • Astronomy and Astrophysics

Fingerprint Dive into the research topics of 'Diffuse gamma rays from the Galactic Plane: Probing the "GeV excess" and identifying the "TeV excess"'. Together they form a unique fingerprint.

Cite this