TY - JOUR
T1 - Differing responses of the diurnal cycle of land surface and air temperatures to deforestation
AU - Chen, Liang
AU - Dirmeyer, Paul A.
N1 - Funding Information:
This study was supported by the National Science Foundation (AGS-1419445). We would like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. The Community Earth System Model is freely available at http://www.cesm.ucar.edu/models/cesm1.2/. We also acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank the reviewers for their constructive and thoughtful comments, which helped us to improve this manuscript.
Funding Information:
Acknowledgments. This study was supported by the National Science Foundation (AGS-1419445). We would like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. The Community Earth System Model is freely available at http://www.cesm.ucar.edu/models/cesm1.2/. We also acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank the reviewers for their constructive and thoughtful comments, which helped us to improve this manuscript.
Publisher Copyright:
© 2019 American Meteorological Society.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature Ts is more commonly used in observation-based studies while near-surface air temperature T2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime Ts and T2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in Ts and T2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (Ts) warming, but different turbulent transfer characteristics produce discrepancies in T2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.
AB - Recent studies have shown the impacts of historical land-use land-cover changes (i.e., deforestation) on hot temperature extremes; contradictory temperature responses have been found between studies using observations and climate models. However, different characterizations of surface temperature are sometimes used in the assessments: land surface skin temperature Ts is more commonly used in observation-based studies while near-surface air temperature T2m is more often used in model-based studies. The inconsistent use of temperature variables is not inconsequential, and the relationship between deforestation and various temperature changes can be entangled, which complicates comparisons between observations and model simulations. In this study, the responses in the diurnal cycle of summertime Ts and T2m to deforestation are investigated using the Community Earth System Model. For the daily maximum, opposite responses are found in Ts and T2m. Due to decreased surface roughness after deforestation, the heat at the land surface cannot be efficiently dissipated into the air, leading to a warmer surface but cooler air. For the daily minimum, strong warming is found in T2m, which exceeds daytime cooling and leads to overall warming in daily mean temperatures. After comparing several climate models, we find that the models agree in daytime land surface (Ts) warming, but different turbulent transfer characteristics produce discrepancies in T2m. Our work highlights the need to investigate the diurnal cycles of temperature responses carefully in land-cover change studies. Furthermore, consistent consideration of temperature variables should be applied in future comparisons involving observations and climate models.
KW - General circulation models
KW - Deforestation
KW - Atmosphere-land interaction
KW - Land surface model
UR - http://www.scopus.com/inward/record.url?scp=85074650201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074650201&partnerID=8YFLogxK
U2 - 10.1175/JCLI-D-19-0002.1
DO - 10.1175/JCLI-D-19-0002.1
M3 - Article
AN - SCOPUS:85074650201
SN - 0894-8755
VL - 32
SP - 7067
JO - Journal of Climate
JF - Journal of Climate
IS - 20
ER -