TY - JOUR
T1 - Differentially Private Decoupled Graph Convolutions for Multigranular Topology Protection
AU - Chien, Eli
AU - Li, Pan
AU - Chen, Wei Ning
AU - Özgür, Ayfer
AU - Pan, Chao
AU - Milenkovic, Olgica
N1 - EC, CP and OM were funded by NSF grants CCF-1816913 and CCF-1956384. PL was supported by JPMC AI Research award. WC and A\u00D6 were supported by NSF grant CCF-2213223. The authors would like to thank Sina Sajadmanesh for answering questions regarding the GAP method. The authors would like to thank the anonymous reviewers and area chair for their feedback and effort, which helped to significantly improve the manuscript.
PY - 2023
Y1 - 2023
N2 - Graph Neural Networks (GNNs) have proven to be highly effective in solving real-world learning problems that involve graph-structured data. However, GNNs can also inadvertently expose sensitive user information and interactions through their model predictions. To address these privacy concerns, Differential Privacy (DP) protocols are employed to control the trade-off between provable privacy protection and model utility. Applying standard DP approaches to GNNs directly is not advisable due to two main reasons. First, the prediction of node labels, which relies on neighboring node attributes through graph convolutions, can lead to privacy leakage. Second, in practical applications, the privacy requirements for node attributes and graph topology may differ. In the latter setting, existing DP-GNN models fail to provide multigranular trade-offs between graph topology privacy, node attribute privacy, and GNN utility. To address both limitations, we propose a new framework termed Graph Differential Privacy (GDP), specifically tailored to graph learning. GDP ensures both provably private model parameters as well as private predictions. Additionally, we describe a novel unified notion of graph dataset adjacency to analyze the properties of GDP for different levels of graph topology privacy. Our findings reveal that DP-GNNs, which rely on graph convolutions, not only fail to meet the requirements for multigranular graph topology privacy but also necessitate the injection of DP noise that scales at least linearly with the maximum node degree. In contrast, our proposed Differentially Private Decoupled Graph Convolutions (DPDGCs) represent a more flexible and efficient alternative to graph convolutions that still provides the necessary guarantees of GDP. To validate our approach, we conducted extensive experiments on seven node classification benchmarking and illustrative synthetic datasets. The results demonstrate that DPDGCs significantly outperform existing DP-GNNs in terms of privacy-utility trade-offs. Our code is publicly available.
AB - Graph Neural Networks (GNNs) have proven to be highly effective in solving real-world learning problems that involve graph-structured data. However, GNNs can also inadvertently expose sensitive user information and interactions through their model predictions. To address these privacy concerns, Differential Privacy (DP) protocols are employed to control the trade-off between provable privacy protection and model utility. Applying standard DP approaches to GNNs directly is not advisable due to two main reasons. First, the prediction of node labels, which relies on neighboring node attributes through graph convolutions, can lead to privacy leakage. Second, in practical applications, the privacy requirements for node attributes and graph topology may differ. In the latter setting, existing DP-GNN models fail to provide multigranular trade-offs between graph topology privacy, node attribute privacy, and GNN utility. To address both limitations, we propose a new framework termed Graph Differential Privacy (GDP), specifically tailored to graph learning. GDP ensures both provably private model parameters as well as private predictions. Additionally, we describe a novel unified notion of graph dataset adjacency to analyze the properties of GDP for different levels of graph topology privacy. Our findings reveal that DP-GNNs, which rely on graph convolutions, not only fail to meet the requirements for multigranular graph topology privacy but also necessitate the injection of DP noise that scales at least linearly with the maximum node degree. In contrast, our proposed Differentially Private Decoupled Graph Convolutions (DPDGCs) represent a more flexible and efficient alternative to graph convolutions that still provides the necessary guarantees of GDP. To validate our approach, we conducted extensive experiments on seven node classification benchmarking and illustrative synthetic datasets. The results demonstrate that DPDGCs significantly outperform existing DP-GNNs in terms of privacy-utility trade-offs. Our code is publicly available.
UR - http://www.scopus.com/inward/record.url?scp=85205444563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205444563&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85205444563
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -