TY - JOUR
T1 - Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise
AU - Moore, Daniel R.
AU - Tang, Jason E.
AU - Burd, Nicholas A.
AU - Rerecich, Tracy
AU - Tarnopolsky, Mark A.
AU - Phillips, Stuart M.
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2009/2/15
Y1 - 2009/2/15
N2 - We aimed to determine whether there is a differential stimulation of the contractile myofibrillar and the cellular sarcoplasmic proteins after ingestion of protein and how this is affected by resistance exercise. Fasted (FAST) muscle protein synthesis was measured in seven healthy young men with a primed constant infusion of l-[ring-13 C6 ]phenylalanine. Participants then performed an intense bout of unilateral resistance exercise followed by the consumption of 25 g of whey protein to maximally stimulate protein synthesis. In the rested (FED) leg myofibrillar (MYO) protein synthesis was elevated (P < 0.01) above FAST at 3 h (∼163%) but not at 1 and 5 h (P > 0.05). In contrast, MYO protein synthesis in the exercised (FED-EX) leg was stimulated above FAST at 1, 3 and 5 h (∼100, 216, and 229%, respectively; P < 0.01) with the increase at 5 h being greater than FED (P < 0.01). Thus, the synthesis of muscle contractile proteins is stimulated by both feeding and resistance exercise early (1 h) but has a greater duration and amplitude after resistance exercise. Sarcoplasmic (SARC) protein synthesis was similarly elevated (P < 0.01) above FAST by ∼104% at 3 h in both FED and FED-EX suggesting SARC protein synthesis is stimulated by feeding but that this response is not augmented by resistance exercise. In conclusion, myofibrillar and sarcoplasmic protein synthesis are similarly, but transiently, stimulated with protein feeding. In contrast, resistance exercise rapidly stimulates and sustains the synthesis of only the myofibrillar protein fraction after protein ingestion. These data highlight the importance of measuring the synthetic response of specific muscle protein fractions when examining the effects of exercise and nutrition.
AB - We aimed to determine whether there is a differential stimulation of the contractile myofibrillar and the cellular sarcoplasmic proteins after ingestion of protein and how this is affected by resistance exercise. Fasted (FAST) muscle protein synthesis was measured in seven healthy young men with a primed constant infusion of l-[ring-13 C6 ]phenylalanine. Participants then performed an intense bout of unilateral resistance exercise followed by the consumption of 25 g of whey protein to maximally stimulate protein synthesis. In the rested (FED) leg myofibrillar (MYO) protein synthesis was elevated (P < 0.01) above FAST at 3 h (∼163%) but not at 1 and 5 h (P > 0.05). In contrast, MYO protein synthesis in the exercised (FED-EX) leg was stimulated above FAST at 1, 3 and 5 h (∼100, 216, and 229%, respectively; P < 0.01) with the increase at 5 h being greater than FED (P < 0.01). Thus, the synthesis of muscle contractile proteins is stimulated by both feeding and resistance exercise early (1 h) but has a greater duration and amplitude after resistance exercise. Sarcoplasmic (SARC) protein synthesis was similarly elevated (P < 0.01) above FAST by ∼104% at 3 h in both FED and FED-EX suggesting SARC protein synthesis is stimulated by feeding but that this response is not augmented by resistance exercise. In conclusion, myofibrillar and sarcoplasmic protein synthesis are similarly, but transiently, stimulated with protein feeding. In contrast, resistance exercise rapidly stimulates and sustains the synthesis of only the myofibrillar protein fraction after protein ingestion. These data highlight the importance of measuring the synthetic response of specific muscle protein fractions when examining the effects of exercise and nutrition.
UR - http://www.scopus.com/inward/record.url?scp=60349086380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60349086380&partnerID=8YFLogxK
U2 - 10.1113/jphysiol.2008.164087
DO - 10.1113/jphysiol.2008.164087
M3 - Article
C2 - 19124543
AN - SCOPUS:60349086380
VL - 587
SP - 897
EP - 904
JO - Journal of Physiology
JF - Journal of Physiology
SN - 0022-3751
IS - 4
ER -