Abstract
We present a data-driven approach to automate audio signal processing by incorporating stateful third-party, audio effects as layers within a deep neural network. We then train a deep encoder to analyze input audio and control effect parameters to perform the desired signal manipulation, requiring only input-target paired audio data as supervision. To train our network with non-differentiable black-box effects layers, we use a fast, parallel stochastic gradient approximation scheme within a standard auto differentiation graph, yielding efficient end-to-end backpropagation. We demonstrate the power of our approach with three separate automatic audio production applications: tube amplifier emulation, automatic removal of breaths and pops from voice recordings, and automatic music mastering. We validate our results with a subjective listening test, showing our approach not only can enable new automatic audio effects tasks, but can yield results comparable to a specialized, state-of-the-art commercial solution for music mastering.
Original language | English (US) |
---|---|
Pages (from-to) | 66-70 |
Number of pages | 5 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 2021-June |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: Jun 6 2021 → Jun 11 2021 |
Keywords
- Audio effects
- Black-box optimization
- Deep learning
- Differentiable signal processing
- Gradient approximation
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering