Dietary alpha-lipoic acid alters piglet neurodevelopment

Austin T. Mudd, Rosaline V. Waworuntu, Brian M. Berg, Ryan N. Dilger

Research output: Contribution to journalArticle

Abstract

Introduction: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity; however, the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose-response effects of a-LA on piglet growth and neurodevelopment. Methods: Beginning at 2 days of age, 31 male pigs received 1 of 3 diets: control (CONT) (0 mg a-LA/100 g), low a-LA (LOW) (120 mg a-LA/100 g), or high a-LA (HIGH) (240 mg a-LA/100 g). From 14 to 28 days of age, pigs were subjected to spatial T-maze assessment, and macrostructural and microstructural neuroimaging procedures were performed at 31 days of age. Results: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH-fed pigs compared with both the CONT (P < 0.01)- and LOW (P = 0.03)-fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH-fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH-fed piglets were not different (P = 0.12) than LOW-fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH-fed piglets. Conclusion: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT- and LOW-fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets.

Original languageEnglish (US)
Article number44
JournalFrontiers in Pediatrics
Volume4
Issue numberMAY
DOIs
StatePublished - May 1 2016

Fingerprint

Thioctic Acid
Internal Capsule
Swine
Diet
Antioxidants
Anisotropy
Neuroimaging
Brain
Diffusion Tensor Imaging
Human Milk
Growth
Learning
Weights and Measures

Keywords

  • Alpha-lipoic acid
  • Antioxidant
  • Internal capsule
  • Neonatal
  • Neurodevelopment
  • Nutrition
  • Piglet

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health

Cite this

Dietary alpha-lipoic acid alters piglet neurodevelopment. / Mudd, Austin T.; Waworuntu, Rosaline V.; Berg, Brian M.; Dilger, Ryan N.

In: Frontiers in Pediatrics, Vol. 4, No. MAY, 44, 01.05.2016.

Research output: Contribution to journalArticle

Mudd, Austin T. ; Waworuntu, Rosaline V. ; Berg, Brian M. ; Dilger, Ryan N. / Dietary alpha-lipoic acid alters piglet neurodevelopment. In: Frontiers in Pediatrics. 2016 ; Vol. 4, No. MAY.
@article{a92c42852883455ea85a34e49e14266b,
title = "Dietary alpha-lipoic acid alters piglet neurodevelopment",
abstract = "Introduction: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity; however, the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose-response effects of a-LA on piglet growth and neurodevelopment. Methods: Beginning at 2 days of age, 31 male pigs received 1 of 3 diets: control (CONT) (0 mg a-LA/100 g), low a-LA (LOW) (120 mg a-LA/100 g), or high a-LA (HIGH) (240 mg a-LA/100 g). From 14 to 28 days of age, pigs were subjected to spatial T-maze assessment, and macrostructural and microstructural neuroimaging procedures were performed at 31 days of age. Results: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH-fed pigs compared with both the CONT (P < 0.01)- and LOW (P = 0.03)-fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH-fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH-fed piglets were not different (P = 0.12) than LOW-fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH-fed piglets. Conclusion: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT- and LOW-fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets.",
keywords = "Alpha-lipoic acid, Antioxidant, Internal capsule, Neonatal, Neurodevelopment, Nutrition, Piglet",
author = "Mudd, {Austin T.} and Waworuntu, {Rosaline V.} and Berg, {Brian M.} and Dilger, {Ryan N.}",
year = "2016",
month = "5",
day = "1",
doi = "10.3389/fped.2016.00044",
language = "English (US)",
volume = "4",
journal = "Frontiers in Pediatrics",
issn = "2296-2360",
publisher = "Frontiers Media S. A.",
number = "MAY",

}

TY - JOUR

T1 - Dietary alpha-lipoic acid alters piglet neurodevelopment

AU - Mudd, Austin T.

AU - Waworuntu, Rosaline V.

AU - Berg, Brian M.

AU - Dilger, Ryan N.

PY - 2016/5/1

Y1 - 2016/5/1

N2 - Introduction: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity; however, the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose-response effects of a-LA on piglet growth and neurodevelopment. Methods: Beginning at 2 days of age, 31 male pigs received 1 of 3 diets: control (CONT) (0 mg a-LA/100 g), low a-LA (LOW) (120 mg a-LA/100 g), or high a-LA (HIGH) (240 mg a-LA/100 g). From 14 to 28 days of age, pigs were subjected to spatial T-maze assessment, and macrostructural and microstructural neuroimaging procedures were performed at 31 days of age. Results: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH-fed pigs compared with both the CONT (P < 0.01)- and LOW (P = 0.03)-fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH-fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH-fed piglets were not different (P = 0.12) than LOW-fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH-fed piglets. Conclusion: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT- and LOW-fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets.

AB - Introduction: Alpha-lipoic acid (a-LA) is an antioxidant shown to ameliorate age-associated impairments of brain and cardiovascular function. Human milk is known to have high antioxidant capacity; however, the role of antioxidants in the developing brain is largely uncharacterized. This exploratory study aimed to examine the dose-response effects of a-LA on piglet growth and neurodevelopment. Methods: Beginning at 2 days of age, 31 male pigs received 1 of 3 diets: control (CONT) (0 mg a-LA/100 g), low a-LA (LOW) (120 mg a-LA/100 g), or high a-LA (HIGH) (240 mg a-LA/100 g). From 14 to 28 days of age, pigs were subjected to spatial T-maze assessment, and macrostructural and microstructural neuroimaging procedures were performed at 31 days of age. Results: No differences due to diet were observed for bodyweight gain or intestinal weight and length. Spatial T-maze assessment did not reveal learning differences due to diet in proportion of correct choices or latency to choice measures. Diffusion tensor imaging revealed decreased (P = 0.01) fractional anisotropy (FA) in the internal capsule of HIGH-fed pigs compared with both the CONT (P < 0.01)- and LOW (P = 0.03)-fed pigs, which were not different from one another. Analysis of axial diffusivity (AD) within the internal capsule revealed a main effect of diet (P < 0.01) in which HIGH-fed piglets exhibited smaller (P < 0.01) rates of diffusion compared with CONT piglets, but HIGH-fed piglets were not different (P = 0.12) than LOW-fed piglets. Tract-based spatial statistics, a comparison of FA values along white matter tracts, revealed 1,650 voxels where CONT piglets exhibited higher (P < 0.05) values compared with HIGH-fed piglets. Conclusion: The lack of differences in intestinal and bodyweight measures among piglets indicate a-LA supplementation does not impact overall growth, regardless of concentration. Additionally, no observed differences between CONT- and LOW-fed piglets in behavior and neuroimaging measures indicate a low concentration of a-LA does not affect normal brain development. Supplementation of a-LA at a high concentration appeared to alter white matter maturation in the internal capsule, which may indicate delayed neurodevelopment in these piglets.

KW - Alpha-lipoic acid

KW - Antioxidant

KW - Internal capsule

KW - Neonatal

KW - Neurodevelopment

KW - Nutrition

KW - Piglet

UR - http://www.scopus.com/inward/record.url?scp=85040446420&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85040446420&partnerID=8YFLogxK

U2 - 10.3389/fped.2016.00044

DO - 10.3389/fped.2016.00044

M3 - Article

AN - SCOPUS:85040446420

VL - 4

JO - Frontiers in Pediatrics

JF - Frontiers in Pediatrics

SN - 2296-2360

IS - MAY

M1 - 44

ER -