TY - JOUR
T1 - Dielectric-induced interface states in black phosphorus and tungsten diselenide capacitors
AU - Liu, Jialun
AU - Zhou, Yujie
AU - Zhu, Wenjuan
N1 - Publisher Copyright:
© 2018 Author(s).
PY - 2018/7/2
Y1 - 2018/7/2
N2 - The interfaces between two-dimensional (2D) materials and gate dielectrics play an important role in the performance and reliability of 2D electronic devices. In this work, we systematically studied the capacitance and interface states of a narrow bandgap material (black phosphorus, BP) and an intermediate bandgap material (tungsten diselenide, WSe2). We found that their capacitance-voltage (CV) characteristics are drastically different. The BP capacitor CVs demonstrate ambipolar and low-frequency properties, while WSe2 capacitor CVs shows unipolar (p-type) and high-frequency behavior. The narrow bandgap of BP (∼0.3 eV) enables large amounts of minority carriers, low generation-recombination resistance, and short minority carrier lifetime, giving low-frequency behavior of the CVs, while the wide bandgap of WSe2 (∼1.21 eV) leads to the high-frequency behavior of the CVs. The nearly intrinsic (low) doping of the BP flake results in ambipolar CVs which are symmetric about the midgap. The naturally p-type doping in WSe2 gives unipolar CVs similar to p-type silicon. In both materials, the interface state density is as high as 1013 cm-2eV-1. Although 2D materials are free of dangling bonds, their intimate contact with high-k dielectrics like Al2O3 could generate a larger number of interface states and degrades the device performance. Hexagonal boron nitride (hBN) effectively reduces the interface state density as dielectrics. The interface state for BP/hBN capacitor shows much lower density than counterpart with Al2O3 gate dielectric. We also found that the interface state density increases exponentially with the gate voltage when the surface Fermi level is swept from the midgap toward the band edge.
AB - The interfaces between two-dimensional (2D) materials and gate dielectrics play an important role in the performance and reliability of 2D electronic devices. In this work, we systematically studied the capacitance and interface states of a narrow bandgap material (black phosphorus, BP) and an intermediate bandgap material (tungsten diselenide, WSe2). We found that their capacitance-voltage (CV) characteristics are drastically different. The BP capacitor CVs demonstrate ambipolar and low-frequency properties, while WSe2 capacitor CVs shows unipolar (p-type) and high-frequency behavior. The narrow bandgap of BP (∼0.3 eV) enables large amounts of minority carriers, low generation-recombination resistance, and short minority carrier lifetime, giving low-frequency behavior of the CVs, while the wide bandgap of WSe2 (∼1.21 eV) leads to the high-frequency behavior of the CVs. The nearly intrinsic (low) doping of the BP flake results in ambipolar CVs which are symmetric about the midgap. The naturally p-type doping in WSe2 gives unipolar CVs similar to p-type silicon. In both materials, the interface state density is as high as 1013 cm-2eV-1. Although 2D materials are free of dangling bonds, their intimate contact with high-k dielectrics like Al2O3 could generate a larger number of interface states and degrades the device performance. Hexagonal boron nitride (hBN) effectively reduces the interface state density as dielectrics. The interface state for BP/hBN capacitor shows much lower density than counterpart with Al2O3 gate dielectric. We also found that the interface state density increases exponentially with the gate voltage when the surface Fermi level is swept from the midgap toward the band edge.
UR - http://www.scopus.com/inward/record.url?scp=85049628580&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85049628580&partnerID=8YFLogxK
U2 - 10.1063/1.5040093
DO - 10.1063/1.5040093
M3 - Article
AN - SCOPUS:85049628580
SN - 0003-6951
VL - 113
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 1
M1 - 013103
ER -