Dicke Superradiance in Ordered Arrays of Multilevel Atoms

Stuart J. Masson, Jacob P. Covey, Sebastian Will, Ana Asenjo-Garcia

Research output: Contribution to journalArticlepeer-review


In inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay that results in a rapid release of energy as a photon burst. While originally studied in pointlike ensembles, this phenomenon persists in extended ordered systems if the interparticle distance is below a certain bound. Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline-earth(-like) atoms, such as strontium and ytterbium. Such atoms offer exciting new opportunities for light-matter interactions, as their internal structure allows for trapping at short interatomic distances compared to their long-wavelength transitions, providing the potential for collectively enhanced dissipative interactions. Despite their intricate electronic structure, we show that two-dimensional arrays of these atomic species should exhibit many-body superradiance for achievable lattice constants. Moreover, superradiance effectively "closes"transitions, such that multilevel atoms become more two-level like. This occurs because the avalanchelike decay funnels the emission of most photons into the dominant transition, overcoming the single-atom decay ratios dictated by their fine structure and Zeeman branching. Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources and as platforms to explore many-body dissipative dynamics.

Original languageEnglish (US)
Article number010344
JournalPRX Quantum
Issue number1
StatePublished - Jan 2024

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Computer Science
  • Mathematical Physics
  • General Physics and Astronomy
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Dicke Superradiance in Ordered Arrays of Multilevel Atoms'. Together they form a unique fingerprint.

Cite this