Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes

Samuel Faucher, Matthias Kuehne, Volodymyr B. Koman, Natalie Northrup, Daichi Kozawa, Zhe Yuan, Sylvia Xin Li, Yuwen Zeng, Takeo Ichihara, Rahul Prasanna Misra, Narayana Aluru, Daniel Blankschtein, Michael S. Strano

Research output: Contribution to journalArticlepeer-review


Although the structure and properties of water under conditions of extreme confinement are fundamentally important for a variety of applications, they remain poorly understood, especially for dimensions less than 2 nm. This problem is confounded by the difficulty in controlling surface roughness and dimensionality in fabricated nanochannels, contributing to a dearth of experimental platforms capable of carrying out the necessary precision measurements. In this work, we utilize an experimental platform based on the interior of lithographically segmented, isolated single-walled carbon nanotubes to study water under extreme nanoscale confinement. This platform generates multiple copies of nanotubes with identical chirality, of diameters from 0.8 to 2.5 nm and lengths spanning 6 to 160 μm, that can be studied individually in real time before and after opening, exposure to water, and subsequent water filling. We demonstrate that, under controlled conditions, the diameter-dependent blue shift of the Raman radial breathing mode (RBM) between 1 and 8 cm-1 measures an increase in the interior mechanical modulus associated with liquid water filling, with no response from exterior water exposure. The observed RBM shift with filling demonstrates a non-monotonic trend with diameter, supporting the assignment of a minimum of 1.81 ± 0.09 cm-1 at 0.93 ± 0.08 nm with a nearly linear increase at larger diameters. We find that a simple hard-sphere model of water in the confined nanotube interior describes key features of the diameter-dependent modulus change of the carbon nanotube and supports previous observations in the literature. Longer segments of 160 μm show partial filling from their ends, consistent with pore clogging. These devices provide an opportunity to study fluid behavior under extreme confinement with high precision and repeatability.

Original languageEnglish (US)
Pages (from-to)2778-2790
Number of pages13
JournalACS Nano
Issue number2
StatePublished - Feb 23 2021


  • Raman spectroscopy
  • carbon nanotubes
  • confinement effects
  • nanofluidics
  • nanopore
  • slip flow

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)
  • Materials Science(all)


Dive into the research topics of 'Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes'. Together they form a unique fingerprint.

Cite this