Development of quantum dot mediated cell image deformetry for microscale tissue deformation measurement

Jun K. Jung, Ka Yaw Teo, J. Craig Dutton, Bumsoo Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Since biological tissues are composed of cells, extracellular matrix, and interstitial fluid, freezing of biological tissues induces complex cell-fluid-matrix interaction. Quantitative understanding of this cell-fluid-matrix interaction is crucial to the design and optimization of a wide variety of cryomedicine applications. However, quantitative measurement of the interaction is extremely challenging due to the lack of reliable non-invasive measurement techniques during freezing and thawing. In the present study, a new measurement technique was developed to dynamically measure microscale tissue deformation during freezing/thawing and its feasibility was demonstrated. In this method, which is named "Cell Image Deformetry" (CID), engineered tissues with pre-labeled cells with quantum dots are imaged under a fluorescence microscope. Then, the tissue deformation is evaluated by cross-correlating cell locations between sequential microscopic images with known time intervals based on the particle image velocimetry (PIV) data processing technique.

Original languageEnglish (US)
Title of host publicationHeat Transfer, Fluid Flows, and Thermal Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages1765-1770
Number of pages6
ISBN (Electronic)0791843025
DOIs
StatePublished - 2007
Externally publishedYes
EventASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007 - Seattle, United States
Duration: Nov 11 2007Nov 15 2007

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8

Other

OtherASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007
Country/TerritoryUnited States
CitySeattle
Period11/11/0711/15/07

ASJC Scopus subject areas

  • Mechanical Engineering
  • General Engineering

Fingerprint

Dive into the research topics of 'Development of quantum dot mediated cell image deformetry for microscale tissue deformation measurement'. Together they form a unique fingerprint.

Cite this