Abstract

The quest to 'forward-engineer' and fabricate biological machines remains a grand challenge. Towards this end, we have fabricated locomotive bio-bots from hydrogels and cardiomyocytes using a 3D printer. The multi-material bio-bot consisted of a 'biological bimorph' cantilever structure as the actuator to power the bio-bot, and a base structure to define the asymmetric shape for locomotion. The cantilever structure was seeded with a sheet of contractile cardiomyocytes. We evaluated the locomotive mechanisms of several designs of bio-bots by changing the cantilever thickness. The bio-bot that demonstrated the most efficient mechanism of locomotion maximized the use of contractile forces for overcoming friction of the supporting leg, while preventing backward movement of the actuating leg upon relaxation. The maximum recorded velocity of the bio-bot was ∼236 μm s-1, with an average displacement per power stroke of ∼354 μm and average beating frequency of ∼1.5 Hz.

Original languageEnglish (US)
Article number857
JournalScientific reports
Volume2
DOIs
StatePublished - Dec 14 2012

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Development of miniaturized walking biological machines'. Together they form a unique fingerprint.

  • Cite this