Nitric oxide (NO) is endogenously generated by nitric oxide synthase (NOS) enzymes and is involved in a surprisingly wide range of biological functions. As efforts are made to elucidate the regulatory mechanisms of NOS expression and function, there is increasing interest in following NOS activity directly by monitoring NO production. Additionally, spatial and temporal measurements of NO are important for understanding its function and metabolism. In this work, developments in technology enabling NO detection in biological systems are reviewed. Measuring NO at single cell levels is important as NOS is heterogeneously distributed; however, such measurements are difficult as physiological NO levels are in the low nanomolar to low micromolar range. Here, three categories of analytical techniques enabling NO detection at single cell levels are highlighted: fluorescence microscopy, capillary electrophoresis with laser induced fluorescence detection, and electrochemistry. For each, the basic principles, performance, applications, figures of merits and limitations are presented in terms of single cell NO detection.

Original languageEnglish (US)
Pages (from-to)423-433
Number of pages11
Issue number4
StatePublished - 2008

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Environmental Chemistry
  • Spectroscopy
  • Electrochemistry


Dive into the research topics of 'Detection of nitric oxide in single cells'. Together they form a unique fingerprint.

Cite this