Abstract
Molecular dynamics simulations revealed that back-and-forth motion of DNA strands through a 1 nm diameter pore exhibits sequence-specific hysteresis that arises from the reorientation of the DNA bases in the nanopore constriction. Such hysteresis of the DNA motion results in detectable changes of the electrostatic potential at the electrodes of the nanopore capacitor and in a sequence-specific drift of the DNA strand under an oscillating transmembrane bias. A strategy is suggested for sequencing DNA in a nanopore using the electric field that alternates periodically in time.
Original language | English (US) |
---|---|
Pages (from-to) | 56-63 |
Number of pages | 8 |
Journal | Nano letters |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2008 |
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanical Engineering