Detection of Acetylcholine at Nanoscale NPOE/Water Liquid/Liquid Interface Electrodes

Henry D. Jetmore, Conrad B. Milton, Edappalil Satheesan Anupriya, Ran Chen, Kerui Xu, Mei Shen

Research output: Contribution to journalArticlepeer-review


The interface between two immiscible electrolyte solutions (ITIES) has become a very powerful analytical platform for sensing a diverse range of chemicals (e.g., metal ions and neurotransmitters) with the advantage of being able to detect non-redox electroactive species. The ITIES is formed between organic and aqueous phases. Organic solvent identity is crucial to the detection characteristics of the ITIES [half-wave transfer potential (E1/2), potential window range, limit of detection, transfer coefficient (α), standard heterogeneous ion-transfer rate constant (k0), etc.]. Here, we demonstrated, for the first time at the nanoscale, the detection characteristics of the NPOE/water ITIES. Linear detection of the diffusion-limited current at different concentrations of acetylcholine (ACh) was demonstrated with cyclic voltammetry (CV) and i-t amperometry. The E1/2 of ACh transfer at the NPOE/water nanoITIES was -0.342 ± 0.009 V versus the E1/2 of tetrabutylammonium (TBA+). The limit of detection of ACh at the NPOE/water nanoITIES was 37.1 ± 1.5 μM for an electrode with a radius of ∼127 nm. We also determined the ion-transfer kinetics parameters, α and k0, of TBA+ at the NPOE/water nanoITIES by fitting theoretical cyclic voltammograms to experimental voltammograms. This work lays the basis for future cellular studies using ACh detection at the nanoscale and for studies to detect other analytes. The NPOE/water ITIES offers a potential window distinct from that of the 1,2-dichloroethane (DCE)/water ITIES. This unique potential window would offer the ability to detect analytes that are not easily detected at the DCE/water ITIES.

Original languageEnglish (US)
Pages (from-to)16535-16542
Number of pages8
JournalAnalytical Chemistry
Issue number49
StatePublished - Dec 14 2021

ASJC Scopus subject areas

  • Analytical Chemistry


Dive into the research topics of 'Detection of Acetylcholine at Nanoscale NPOE/Water Liquid/Liquid Interface Electrodes'. Together they form a unique fingerprint.

Cite this