TY - JOUR
T1 - Detection of Acetylcholine at Nanoscale NPOE/Water Liquid/Liquid Interface Electrodes
AU - Jetmore, Henry D.
AU - Milton, Conrad B.
AU - Anupriya, Edappalil Satheesan
AU - Chen, Ran
AU - Xu, Kerui
AU - Shen, Mei
N1 - Funding Information:
The SEM measurements were carried out in part in the Materials Research Laboratory Central Research Facilities, University of Illinois at Urbana-Champaign. The authors are grateful to the support to this research by a National Science Foundation CAREER Award (CHE 19-45274) to M.S. C.B.M. appreciates the support from the Summer 2021 Fred C. and Josephine C. Falkner Scholarship for Undergraduate Research through the Department of Chemistry at the University of Illinois at Urbana-Champaign.
Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/12/14
Y1 - 2021/12/14
N2 - The interface between two immiscible electrolyte solutions (ITIES) has become a very powerful analytical platform for sensing a diverse range of chemicals (e.g., metal ions and neurotransmitters) with the advantage of being able to detect non-redox electroactive species. The ITIES is formed between organic and aqueous phases. Organic solvent identity is crucial to the detection characteristics of the ITIES [half-wave transfer potential (E1/2), potential window range, limit of detection, transfer coefficient (α), standard heterogeneous ion-transfer rate constant (k0), etc.]. Here, we demonstrated, for the first time at the nanoscale, the detection characteristics of the NPOE/water ITIES. Linear detection of the diffusion-limited current at different concentrations of acetylcholine (ACh) was demonstrated with cyclic voltammetry (CV) and i-t amperometry. The E1/2 of ACh transfer at the NPOE/water nanoITIES was -0.342 ± 0.009 V versus the E1/2 of tetrabutylammonium (TBA+). The limit of detection of ACh at the NPOE/water nanoITIES was 37.1 ± 1.5 μM for an electrode with a radius of ∼127 nm. We also determined the ion-transfer kinetics parameters, α and k0, of TBA+ at the NPOE/water nanoITIES by fitting theoretical cyclic voltammograms to experimental voltammograms. This work lays the basis for future cellular studies using ACh detection at the nanoscale and for studies to detect other analytes. The NPOE/water ITIES offers a potential window distinct from that of the 1,2-dichloroethane (DCE)/water ITIES. This unique potential window would offer the ability to detect analytes that are not easily detected at the DCE/water ITIES.
AB - The interface between two immiscible electrolyte solutions (ITIES) has become a very powerful analytical platform for sensing a diverse range of chemicals (e.g., metal ions and neurotransmitters) with the advantage of being able to detect non-redox electroactive species. The ITIES is formed between organic and aqueous phases. Organic solvent identity is crucial to the detection characteristics of the ITIES [half-wave transfer potential (E1/2), potential window range, limit of detection, transfer coefficient (α), standard heterogeneous ion-transfer rate constant (k0), etc.]. Here, we demonstrated, for the first time at the nanoscale, the detection characteristics of the NPOE/water ITIES. Linear detection of the diffusion-limited current at different concentrations of acetylcholine (ACh) was demonstrated with cyclic voltammetry (CV) and i-t amperometry. The E1/2 of ACh transfer at the NPOE/water nanoITIES was -0.342 ± 0.009 V versus the E1/2 of tetrabutylammonium (TBA+). The limit of detection of ACh at the NPOE/water nanoITIES was 37.1 ± 1.5 μM for an electrode with a radius of ∼127 nm. We also determined the ion-transfer kinetics parameters, α and k0, of TBA+ at the NPOE/water nanoITIES by fitting theoretical cyclic voltammograms to experimental voltammograms. This work lays the basis for future cellular studies using ACh detection at the nanoscale and for studies to detect other analytes. The NPOE/water ITIES offers a potential window distinct from that of the 1,2-dichloroethane (DCE)/water ITIES. This unique potential window would offer the ability to detect analytes that are not easily detected at the DCE/water ITIES.
UR - http://www.scopus.com/inward/record.url?scp=85120920533&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120920533&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.1c03711
DO - 10.1021/acs.analchem.1c03711
M3 - Article
C2 - 34846864
AN - SCOPUS:85120920533
SN - 0003-2700
VL - 93
SP - 16535
EP - 16542
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 49
ER -