Detection and assessment of wood decay using X-ray computer tomography

Megan McGovern, Adam Senalik, George Chen, Frank C. Beall, Henrique Reis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Loblolly pine (Pinus taeda) wood cube specimens were exposed to Gloeophyllum fungus (Gloeophyllum trabeum) for increasing periods of time ranging from one week to twelve weeks. The corresponding mass of each of these specimens was recorded before and after they were subjected to the controlled decay. X-ray computed tomography (CT) was then carried out. From the CT scans and recorded mass data, the specimens' corresponding volumes and densities were calculated. Blocks decayed for twelve weeks experienced, on the average, the greatest loss of mass (≈40%), volume (≈30%), and density (≈37%). The observations quantified the well-known effect of non-uniform decay, with the greatest occurring at the surface in contact with the fungi and decreasing to the opposite surface. Wood blocks subjected to controlled decay for twelve weeks lost 47% of density at the surface in contact with the fungi and 28% at the opposite surface, while blocks subjected to only one week of decay experienced over 5% density loss at the surface in contact with fungi and nearly 0% at the opposite surface. While the mass loss of specimens exposed to only one week of controlled decay was difficult to evaluate because of initial moisture absorption, these results indicate that x-ray CT can detect decay in wood specimens exposed to only one week of controlled decay using density measurements.

Original languageEnglish (US)
Title of host publicationSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010
DOIs
StatePublished - 2010
EventSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010 - San Diego, CA, United States
Duration: Mar 8 2010Mar 11 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7647
ISSN (Print)0277-786X

Other

OtherSensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010
Country/TerritoryUnited States
CitySan Diego, CA
Period3/8/103/11/10

Keywords

  • Loblolly pine
  • Rot
  • Wood
  • Wood decay
  • Wood density
  • X-ray computed tomography

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Detection and assessment of wood decay using X-ray computer tomography'. Together they form a unique fingerprint.

Cite this