@inproceedings{63e3c6d3077d45e5add6533e375aa556,
title = "Detecting Impact Relevant Sections in Scientific Research",
abstract = "Impact assessment is an evolving area of research that aims at measuring and predicting the potential effects of projects or programs on a variety of stakeholders. While measuring the impact of scientific research is a vibrant subdomain of impact assessment, a recurring obstacle in this specific area is the lack of an efficient framework that facilitates labeling and analysis of lengthy reports. To address this issue, we propose, implement, and evaluate a framework for automatically assessing the impact of scientific research projects by identifying pertinent sections in research reports that indicate potential impact. We leverage a mixed-method approach that combines manual annotation with supervised machine learning to extract these passages from project reports. We experiment with different machine learning algorithms, including traditional statistical models as well as pre-trained transformer language models. Our results show that our proposed method achieves accuracy scores up to 0.81, and that our method is generalizable to scientific research from different domains and different languages.",
keywords = "annotation, impact detection, machine learning, mixed-methods, project reports",
author = "Maria Becker and Kanyao Han and Antonina Werthmann and Rezvaneh Rezapour and Haejin Lee and Jana Diesner and Andreas Witt",
note = "Publisher Copyright: {\textcopyright} 2024 ELRA Language Resource Association: CC BY-NC 4.0.; Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 ; Conference date: 20-05-2024 Through 25-05-2024",
year = "2024",
language = "English (US)",
series = "2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings",
publisher = "European Language Resources Association (ELRA)",
pages = "4744--4749",
editor = "Nicoletta Calzolari and Min-Yen Kan and Veronique Hoste and Alessandro Lenci and Sakriani Sakti and Nianwen Xue",
booktitle = "2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings",
}