Detecting high-frequency gravitational waves with microwave cavities

Asher Berlin, Diego Blas, Raffaele Tito D'agnolo, Sebastian A.R. Ellis, Roni Harnik, Yonatan Kahn, Jan Schütte-Engel

Research output: Contribution to journalArticlepeer-review


We give a detailed treatment of electromagnetic signals generated by gravitational waves (GWs) in resonant cavity experiments. Our investigation corrects and builds upon previous studies by carefully accounting for the gauge dependence of relevant quantities. We work in a preferred frame for the laboratory, the proper detector frame, and show how to resum short-wavelength effects to provide analytic results that are exact for GWs of arbitrary wavelength. This formalism allows us to firmly establish that, contrary to previous claims, cavity experiments designed for the detection of axion dark matter only need to reanalyze existing data to search for high-frequency GWs with strains as small as h∼10-22-10-21. We also argue that directional detection is possible in principle using readout of multiple cavity modes. Further improvements in sensitivity are expected with cutting-edge advances in superconducting cavity technology.

Original languageEnglish (US)
Article numbere116011
JournalPhysical Review D
Issue number11
StatePublished - Jun 1 2022

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Detecting high-frequency gravitational waves with microwave cavities'. Together they form a unique fingerprint.

Cite this