@inproceedings{d2f8196d7fff4fb69dc9e8af7bbf21f3,
title = "Design of bird-like airfoils",
abstract = "The size constraints and high payload requirements of Micro Air Vehicles necessitate the design of vehicles with high wing loading that require efficient flight at high lift coefficients. MAVs operate in the low Reynolds number regime that is characterized by highly viscous phenomena like the laminar separation bubble causing large losses in efficiency. Drawing inspiration from nature, bird-like sectional profile airfoil families were designed in PROFOIL to operate at these Reynolds numbers. In this paper, parametric studies using multipoint inverse airfoil design are presented to demonstrate techniques and design philosophies employed to design airfoil families between 4–6% thickness that include moment constraints ranging from Cm,c/4 of −0.14 to −0.26.",
author = "Ananda, {Gavin K.} and Selig, {Michael S.}",
note = "Publisher Copyright: {\textcopyright} 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.; AIAA Aerospace Sciences Meeting, 2018 ; Conference date: 08-01-2018 Through 12-01-2018",
year = "2018",
doi = "10.2514/6.2018-0310",
language = "English (US)",
isbn = "9781624105241",
series = "AIAA Aerospace Sciences Meeting, 2018",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Aerospace Sciences Meeting",
}