Abstract
This paper is the second in a series of papers describing the design and development of an osteochondral scaffold using collagen-glycosaminoglycan and calcium phosphate technologies engineered for the regenerative repair of articular cartilage defects. The previous paper described a technology (concurrent mapping) for systematic variation and control of the chemical composition of triple coprecipitated collagen, glycosaminoglycan, and calcium phosphate (CGCaP) nanocomposites without using titrants. This paper describes (1) fabricating porous, three-dimensional scaffolds from the CGCaP suspensions, (2) characterizing the microstructure and mechanical properties of such scaffolds, and (3) modifying the calcium phosphate mineral phase. The methods build on the previously demonstrated ability to vary the composition of a CGCaP suspension (calcium phosphate mass fraction between 0 and 80 wt %) and enable the production of scaffolds whose pore architecture (mean pore size: 50-1000 μm), CaP phase chemistry (brushite, octacalcium phosphate, apatite) and crosslinking density (therefore mechanical properties and degradation rate) can be independently controlled. The scaffolds described in this paper combine the desirable biochemical properties and pore architecture of porous collagen-glycosaminoglycan scaffolds with the strength and direct bone-bonding properties of calcium phosphate biomaterials in a manner that can be tailored to meet the demands of a range of applications in orthopedics and regenerative medicine.
Original language | English (US) |
---|---|
Pages (from-to) | 1066-1077 |
Number of pages | 12 |
Journal | Journal of Biomedical Materials Research - Part A |
Volume | 92 |
Issue number | 3 |
DOIs | |
State | Published - Mar 1 2010 |
Keywords
- Bone
- Collagen
- Regeneration
- Scaffold
ASJC Scopus subject areas
- Biomedical Engineering
- Biomaterials
- Ceramics and Composites
- Metals and Alloys