Design and verification of a new monochromatic thermal emission component for the I3RC community Monte Carlo model

Alexandra L. Jones, Larry Di Girolamo

Research output: Contribution to journalArticlepeer-review

Abstract

The Intercomparison of 3D Radiation Codes (I3RC) community Monte Carlo model has been extended to include a source of photon emission from the surface and atmosphere, thereby making it capable of simulating scalar radiative transfer in a 3D scattering, absorbing, and emitting domain with both internal and external sources. The theoretical basis, computational implementation, verification of the internal emission, and computational performance of the resulting model, the "IMC+emission," is presented. Thorough verification includes fundamental tests of reciprocity and energy conservation, comparison to analytical solutions, and comparison with another 3D model, the Spherical Harmonics Discrete Ordinate Method (SHDOM). All comparisons to fundamental tests and analytical solutions are accurate to within the precision of the simulations-typically better than 0.05%. Comparison cases to SHDOM were typically within a few percent, except for flux divergence near cloud edges, where the effects of grid definition between the two models manifest themselves. Finally, the model is applied to the established I3RC case 4 cumulus cloud field to provide a benchmark result, and computational performance and strong and weak scaling metrics are presented. The outcome is a thoroughly vetted, publicly available, open-source benchmark tool to study 3D radiative transfer from either internal or external sources of radiation at wavelengths for which scattering, emission, and absorption are important.

Original languageEnglish (US)
Pages (from-to)885-906
Number of pages22
JournalJournal of the Atmospheric Sciences
Volume75
Issue number3
DOIs
StatePublished - Mar 1 2018

Keywords

  • Cloud radiative effects
  • Longwave radiation
  • Model evaluation/performance
  • Radiative transfer
  • Shortwave radiation

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Design and verification of a new monochromatic thermal emission component for the I3RC community Monte Carlo model'. Together they form a unique fingerprint.

Cite this