Design and diversity in bacterial chemotaxis: A comparative study in Escherichia coli and Bacillus subtilis

Christopher V. Rao, John R. Kirby, Adam P. Arkin

Research output: Contribution to journalArticlepeer-review

Abstract

Comparable processes in different species often involve homologous genes. One question is whether the network structure, in particular the feedback control structure, is also conserved. The bacterial chemotaxis pathways in E. coli and B. subtilis both regulate the same task, namely, excitation and adaptation to environmental signals. Both pathways employ many orthologous genes. Yet how these orthologs contribute to network function in each organism is different. To investigate this problem, we propose what is to our knowledge the first computational model for B. subtilis chemotaxis and compare it to previously published models for chemotaxis in E. coli. The models reveal that the core control strategy for signal processing is the same in both organisms, though in B. subtilis there are two additional feedback loops that provide an additional layer of regulation and robustness. Furthermore, the network structures are different despite the similarity of the proteins in each organism. These results demonstrate the limitations of pathway inferences based solely on homology and suggest that the control strategy is an evolutionarily conserved property.

Original languageEnglish (US)
JournalPLoS biology
Volume2
Issue number2
DOIs
StatePublished - 2004
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'Design and diversity in bacterial chemotaxis: A comparative study in Escherichia coli and Bacillus subtilis'. Together they form a unique fingerprint.

Cite this